Loading of a surface-electrode ion trap from a remote, precooled source
Author(s)
Sage, Jeremy M.; Kerman, Andrew J.; Chiaverini, John
DownloadSage-2012-Loading of a surface-electrode ion trap from a remote.pdf (585.5Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ∼10[superscript 6] neutral [superscript 88]Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of metal deposition on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has the potential for enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and precooled source may enable scalable quantum-information processing with trapped ions in large, low-depth surface-trap arrays that are not amenable to loading from a hot atomic beam.
Date issued
2012-07Department
Lincoln LaboratoryJournal
Physical Review A
Publisher
American Physical Society
Citation
Sage, Jeremy, Andrew Kerman, and John Chiaverini. “Loading of a Surface-electrode Ion Trap from a Remote, Precooled Source.” Physical Review A 86.1 (2012). ©2012 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622