MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Securing computation against continuous leakage

Author(s)
Goldwasser, Shafi; Rothblum, Guy N.
Thumbnail
DownloadGoldwasser-Securing computation.pdf (259.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We present a general method to compile any cryptographic algorithm into one which resists side channel attacks of the only computation leaks information variety for an unbounded number of executions. Our method uses as a building block a semantically secure subsidiary bit encryption scheme with the following additional operations: key refreshing, oblivious generation of cipher texts, leakage resilience re-generation, and blinded homomorphic evaluation of one single complete gate (e.g. NAND). Furthermore, the security properties of the subsidiary encryption scheme should withstand bounded leakage incurred while performing each of the above operations. We show how to implement such a subsidiary encryption scheme under the DDH intractability assumption and the existence of a simple secure hardware component. The hardware component is independent of the encryption scheme secret key. The subsidiary encryption scheme resists leakage attacks where the leakage is computable in polynomial time and of length bounded by a constant fraction of the security parameter.
Description
30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings
Date issued
2010-08
URI
http://hdl.handle.net/1721.1/73956
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Advances in Cryptology – CRYPTO 2010
Publisher
Springer Berlin / Heidelberg
Citation
Goldwasser, Shafi, and Guy N. Rothblum. “Securing Computation Against Continuous Leakage.” Advances in Cryptology – CRYPTO 2010. Ed. Tal Rabin. LNCS Vol. 6223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 59–79.
Version: Author's final manuscript
ISBN
978-3-642-14622-0
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.