MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrahigh Speed Imaging of the Rat Retina Using Ultrahigh Resolution Spectral/Fourier Domain OCT

Author(s)
Liu, Jonathan Jaoshin; Potsaid, Benjamin M.; Chen, Yueli; Gorczynska, Iwona; Srinivasan, Vivek J.; Duker, Jay S.; Fujimoto, James G.; ... Show more Show less
Thumbnail
DownloadFujimoto-Ultrahigh-speed Imaging.pdf (3.229Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We performed OCT imaging of the rat retina at 70,000 axial scans per second with ~3 μm axial resolution. Three-dimensional OCT (3D-OCT) data sets of the rat retina were acquired. The high speed and high density data sets enable improved en face visualization by reducing eye motion artifacts and improve Doppler OCT measurements. Minimal motion artifacts were visible and the OCT fundus images offer more precise registration of individual OCT images to retinal fundus features. Projection OCT fundus images show features such as the nerve fiber layer, retinal capillary networks and choroidal vasculature. Doppler OCT images and quantitative measurements show pulsatility in retinal blood vessels. Doppler OCT provides noninvasive in vivo quantitative measurements of retinal blood flow properties and may benefit studies of diseases such as glaucoma and diabetic retinopathy. Ultrahigh speed imaging using ultrahigh resolution spectral / Fourier domain OCT promises to enable novel protocols for measuring small animal retinal structure and retinal blood flow. This non-invasive imaging technology is a promising tool for monitoring disease progression in rat and mouse models to assess ocular disease pathogenesis and response to treatment.
Date issued
2010-03
URI
http://hdl.handle.net/1721.1/73963
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Proceedings of SPIE--the International Society for Optical Engineering
Publisher
SPIE
Citation
Jonathan J. Liu ; Benjamin Potsaid ; Yueli Chen ; Iwona Gorczynska ; Vivek J. Srinivasan ; Jay S. Duker ; James G. Fujimoto; Ultrahigh-speed imaging of the rat retina using ultrahigh-resolution spectral/Fourier domain OCT. Proc. SPIE 7550, Ophthalmic Technologies XX, 755017 (March 02, 2010). SPIE © 2010
Version: Final published version
ISSN
0277-786X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.