dc.contributor.author | Choi, Wonjoon | |
dc.contributor.author | Hong, Seunghyun | |
dc.contributor.author | Abrahamson, Joel T. | |
dc.contributor.author | Han, Jae-Hee | |
dc.contributor.author | Song, Changsik | |
dc.contributor.author | Nair, Nitish | |
dc.contributor.author | Baik, Seunghyun | |
dc.contributor.author | Strano, Michael S. | |
dc.date.accessioned | 2012-10-17T20:29:00Z | |
dc.date.available | 2012-10-17T20:29:00Z | |
dc.date.issued | 2010-03 | |
dc.date.submitted | 2009-10 | |
dc.identifier.issn | 1476-1122 | |
dc.identifier.issn | 1476-4660 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/74064 | |
dc.description.abstract | Theoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. Herein, such waves are realized using a 7-nm cyclotrimethylene trinitramine annular shell around a multiwalled carbon nanotube and are amplified by more than 10[superscript 4] times the bulk value, propagating faster than 2 m s[superscript −1], with an effective thermal conductivity of 1.28±0.2 kW m[superscript −1] K[superscript −1] at 2,860 K. This wave produces a concomitant electrical pulse of disproportionately high specific power, as large as 7 kW kg[superscript −1], which we identify as a thermopower wave. Thermally excited carriers flow in the direction of the propagating reaction with a specific power that scales inversely with system size. The reaction also evolves an anisotropic pressure wave of high total impulse per mass (300 N s kg[superscript −1]). Such waves of high power density may find uses as unique energy sources. | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Career Award) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) | en_US |
dc.description.sponsorship | ILJU Academy and Culture Foundation | en_US |
dc.description.sponsorship | Korea (South). Ministry of Education & Human Resources Development (MOEHRD) (KRF-2006-214-D00117) | en_US |
dc.language.iso | en_US | |
dc.publisher | Nature Publishing Group | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/nmat2714 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Strano | en_US |
dc.title | Chemically driven carbon-nanotube-guided thermopower waves | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Choi, Wonjoon et al. “Chemically Driven Carbon-nanotube-guided Thermopower Waves.” Nature Materials 9.5 (2010): 423–429. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.approver | Strano, Michael S. | |
dc.contributor.mitauthor | Choi, Wonjoon | |
dc.contributor.mitauthor | Abrahamson, Joel Theodore | |
dc.contributor.mitauthor | Han, Jae-Hee | |
dc.contributor.mitauthor | Song, Changsik | |
dc.contributor.mitauthor | Nair, Nitish | |
dc.contributor.mitauthor | Strano, Michael S. | |
dc.relation.journal | Nature Materials | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Choi, Wonjoon; Hong, Seunghyun; Abrahamson, Joel T.; Han, Jae-Hee; Song, Changsik; Nair, Nitish; Baik, Seunghyun; Strano, Michael S. | en |
dc.identifier.orcid | https://orcid.org/0000-0003-2944-808X | |
dc.identifier.orcid | https://orcid.org/0000-0002-2676-4442 | |
dspace.mitauthor.error | true | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |