Show simple item record

dc.contributor.authorChoi, Wonjoon
dc.contributor.authorHong, Seunghyun
dc.contributor.authorAbrahamson, Joel T.
dc.contributor.authorHan, Jae-Hee
dc.contributor.authorSong, Changsik
dc.contributor.authorNair, Nitish
dc.contributor.authorBaik, Seunghyun
dc.contributor.authorStrano, Michael S.
dc.date.accessioned2012-10-17T20:29:00Z
dc.date.available2012-10-17T20:29:00Z
dc.date.issued2010-03
dc.date.submitted2009-10
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/74064
dc.description.abstractTheoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. Herein, such waves are realized using a 7-nm cyclotrimethylene trinitramine annular shell around a multiwalled carbon nanotube and are amplified by more than 10[superscript 4] times the bulk value, propagating faster than 2 m s[superscript −1], with an effective thermal conductivity of 1.28±0.2 kW m[superscript −1] K[superscript −1] at 2,860 K. This wave produces a concomitant electrical pulse of disproportionately high specific power, as large as 7 kW kg[superscript −1], which we identify as a thermopower wave. Thermally excited carriers flow in the direction of the propagating reaction with a specific power that scales inversely with system size. The reaction also evolves an anisotropic pressure wave of high total impulse per mass (300 N s kg[superscript −1]). Such waves of high power density may find uses as unique energy sources.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career Award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipILJU Academy and Culture Foundationen_US
dc.description.sponsorshipKorea (South). Ministry of Education & Human Resources Development (MOEHRD) (KRF-2006-214-D00117)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmat2714en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceStranoen_US
dc.titleChemically driven carbon-nanotube-guided thermopower wavesen_US
dc.typeArticleen_US
dc.identifier.citationChoi, Wonjoon et al. “Chemically Driven Carbon-nanotube-guided Thermopower Waves.” Nature Materials 9.5 (2010): 423–429.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverStrano, Michael S.
dc.contributor.mitauthorChoi, Wonjoon
dc.contributor.mitauthorAbrahamson, Joel Theodore
dc.contributor.mitauthorHan, Jae-Hee
dc.contributor.mitauthorSong, Changsik
dc.contributor.mitauthorNair, Nitish
dc.contributor.mitauthorStrano, Michael S.
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChoi, Wonjoon; Hong, Seunghyun; Abrahamson, Joel T.; Han, Jae-Hee; Song, Changsik; Nair, Nitish; Baik, Seunghyun; Strano, Michael S.en
dc.identifier.orcidhttps://orcid.org/0000-0003-2944-808X
dc.identifier.orcidhttps://orcid.org/0000-0002-2676-4442
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record