MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geophysical limitations on the erosion history within Arabia Terra

Author(s)
Evans, Alex J.; Andrews-Hanna, Jeffrey C.; Zuber, Maria
Thumbnail
DownloadZuber_Geophysical limitations.pdf (8.482Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The Arabia Terra region, an area of ~1 × 10[superscript 7] km[superscript 2] lying south of the hemispheric dichotomy boundary and centered at (25E, 5N), is a unique physiographic province with topography and crustal thickness intermediate between those of the southern highlands and northern lowlands. Previous workers have identified numerous morphological indicators suggestive of erosion. Using altimetry data returned by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS) along with gravity data from the Mars Reconnaissance Orbiter (MRO), we place geophysical constraints on the amount of erosion permitted within Arabia Terra. Admittance estimates using a multitaper, spatiospectral localization approach provide a best fit to the observations through degree 50 at an elastic lithosphere thickness of 15 km. The elevation difference between Arabia Terra and the highlands would require as much as 5 km of erosion in certain areas to yield the current topography, neglecting the effects of subsequent flexure. However, incorporating flexural rebound requires substantially more erosion, up to 25 km, in order to reproduce the elevation and crustal thickness deficit of Arabia Terra. Such a large amount of erosion would result in exterior flexural uplift surpassing 1 km and gravity anomalies exceeding observations by ∼60 mGal. Consequently, it is unlikely that Arabia Terra was formed from surface erosion alone. We determine that no more than 3 × 10[superscript 7] km[superscript 3] of material could have been removed from Arabia Terra, while 1.7 × 10[superscript 8] km[superscript 3] of erosion is required to explain the observed crustal thickness.
Date issued
2010-05
URI
http://hdl.handle.net/1721.1/74249
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research Planets
Publisher
American Geophysical Union (AGU)
Citation
Evans, A. J., J. C. Andrews-Hanna, and M. T. Zuber. “Geophysical Limitations on the Erosion History Within Arabia Terra.” Journal of Geophysical Research 115.E5 (2010). ©2010 American Geophysical Union
Version: Final published version
ISSN
0148-0227
2156-2202

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.