dc.contributor.author | Yendiki, Anastasia | |
dc.contributor.author | Stevens, Allison | |
dc.contributor.author | Augustinack, Jean | |
dc.contributor.author | Salat, David | |
dc.contributor.author | Zollei, Lilla | |
dc.contributor.author | Fischl, Bruce | |
dc.date.accessioned | 2012-10-31T18:54:51Z | |
dc.date.available | 2012-10-31T18:54:51Z | |
dc.date.issued | 2009-08 | |
dc.date.submitted | 2009-06 | |
dc.identifier.isbn | 978-1-4244-3932-4 | |
dc.identifier.isbn | 978-1-4244-3931-7 | |
dc.identifier.issn | 1945-7928 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/74533 | |
dc.description.abstract | We investigate the use of anatomical priors in a Bayesian framework for diffusion tractography. We compare priors that utilize different types of information on the white-matter pathways to be reconstructed. This information includes manually labeled paths from a set of training subjects and anatomical segmentation labels obtained from T1-weighted MR images of the same subjects. Our results indicate that the use of prior information increases robustness to end-point ROI size and yields solutions that agree with expert-drawn manual labels, obviating the need for manual intervention on any new test subjects. | en_US |
dc.description.sponsorship | National Institute of Biomedical Imaging and Bioengineering (U.S.) (K99/R00 Pathway to Independence Award EB008129) | en_US |
dc.description.sponsorship | National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant R01-EB001550) | en_US |
dc.description.sponsorship | National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant R01-EB006758) | en_US |
dc.description.sponsorship | National Center for Research Resources (U.S.) (Grant P41-RR14075) | en_US |
dc.description.sponsorship | National Center for Research Resources (U.S.) (Grant R01-RR16594) | en_US |
dc.description.sponsorship | National Center for Research Resources (U.S.) (NCRR BIRN Morphometric Project BIRN002 Grant U24-RR0213820) | en_US |
dc.description.sponsorship | National Institute of Neurological Disorders and Stroke (U.S.) (Grant R01-NS052585) | en_US |
dc.description.sponsorship | Mind Research Institute | en_US |
dc.description.sponsorship | National Alliance for Medical Image Computing (U.S.) the MIND Institute, and the National Alliance for Medical Image Computing (NIH Roadmap for Medical Research Grant U54-EB005149) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/ 10.1109/ISBI.2009.5193126 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | IEEE | en_US |
dc.title | Anatomical priors for global probabilistic diffusion tractography | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Yendiki, Anastasia et al. “Anatomical Priors for Global Probabilistic Diffusion Tractography.” IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. ISBI '09., 2009. 630–633. © 2009 IEEE | en_US |
dc.contributor.department | Harvard University--MIT Division of Health Sciences and Technology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.mitauthor | Yendiki, Anastasia | |
dc.contributor.mitauthor | Stevens, Allison | |
dc.contributor.mitauthor | Augustinack, Jean | |
dc.contributor.mitauthor | Salat, David | |
dc.contributor.mitauthor | Zollei, Lilla | |
dc.contributor.mitauthor | Fischl, Bruce | |
dc.relation.journal | Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '09) | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
dspace.orderedauthors | Yendiki, Anastasia; Stevens, Allison; Augustinack, Jean; Salat, David; Zollei, Lilla; Fischl, Bruce | en |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |