MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime: asymptotics of the stationary distribution

Author(s)
Gamarnik, David; Stolyar, Alexander L.
Thumbnail
DownloadGamarnik_Multiclass multiserver.pdf (286.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We consider a heterogeneous queueing system consisting of one large pool of O(r) identical servers, where r→∞ is the scaling parameter. The arriving customers belong to one of several classes which determines the service times in the distributional sense. The system is heavily loaded in the Halfin–Whitt sense, namely the nominal utilization is 1−a/r√ where a>0 is the spare capacity parameter. Our goal is to obtain bounds on the steady state performance metrics such as the number of customers waiting in the queue Q [superscript r] (∞). While there is a rich literature on deriving process level (transient) scaling limits for such systems, the results for steady state are primarily limited to the single class case. This paper is the first one to address the case of heterogeneity in the steady state regime. Moreover, our results hold for any service policy which does not admit server idling when there are customers waiting in the queue. We assume that the interarrival and service times have exponential distribution, and that customers of each class may abandon while waiting in the queue at a certain rate (which may be zero). We obtain upper bounds of the form O(r√) on both Q [superscript r] (∞) and the number of idle servers. The bounds are uniform w.r.t. parameter r and the service policy. In particular, we show that lim  sup[subscript r]Eexp(θr[superscript −1/2)Q[superscript r](∞))<∞ . Therefore, the sequence r[superscript −1/2]Q[superscript r](∞) is tight and has a uniform exponential tail bound. We further consider the system with strictly positive abandonment rates, and show that in this case every weak limit [ˆ over Q](∞) of r[superscript −1/2]Q[superscript r](∞) has a sub-Gaussian tail. Namely, E[exp(θ([ˆ over Q](∞))[superscript 2])]<∞ , for some θ>0.
Date issued
2012-04
URI
http://hdl.handle.net/1721.1/75009
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Journal
Queueing Systems
Publisher
Springer-Verlag
Citation
Gamarnik, David, and Alexander L. Stolyar. “Multiclass Multiserver Queueing System in the Halfin–Whitt Heavy Traffic Regime: Asymptotics of the Stationary Distribution.” Queueing Systems 71.1-2 (2012): 25–51.
Version: Author's final manuscript
ISSN
0257-0130
1572-9443

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.