Show simple item record

dc.contributor.authorGamarnik, David
dc.contributor.authorStolyar, Alexander L.
dc.date.accessioned2012-11-26T17:30:26Z
dc.date.available2012-11-26T17:30:26Z
dc.date.issued2012-04
dc.date.submitted2012-02
dc.identifier.issn0257-0130
dc.identifier.issn1572-9443
dc.identifier.urihttp://hdl.handle.net/1721.1/75009
dc.description.abstractWe consider a heterogeneous queueing system consisting of one large pool of O(r) identical servers, where r→∞ is the scaling parameter. The arriving customers belong to one of several classes which determines the service times in the distributional sense. The system is heavily loaded in the Halfin–Whitt sense, namely the nominal utilization is 1−a/r√ where a>0 is the spare capacity parameter. Our goal is to obtain bounds on the steady state performance metrics such as the number of customers waiting in the queue Q [superscript r] (∞). While there is a rich literature on deriving process level (transient) scaling limits for such systems, the results for steady state are primarily limited to the single class case. This paper is the first one to address the case of heterogeneity in the steady state regime. Moreover, our results hold for any service policy which does not admit server idling when there are customers waiting in the queue. We assume that the interarrival and service times have exponential distribution, and that customers of each class may abandon while waiting in the queue at a certain rate (which may be zero). We obtain upper bounds of the form O(r√) on both Q [superscript r] (∞) and the number of idle servers. The bounds are uniform w.r.t. parameter r and the service policy. In particular, we show that lim  sup[subscript r]Eexp(θr[superscript −1/2)Q[superscript r](∞))<∞ . Therefore, the sequence r[superscript −1/2]Q[superscript r](∞) is tight and has a uniform exponential tail bound. We further consider the system with strictly positive abandonment rates, and show that in this case every weak limit [ˆ over Q](∞) of r[superscript −1/2]Q[superscript r](∞) has a sub-Gaussian tail. Namely, E[exp(θ([ˆ over Q](∞))[superscript 2])]<∞ , for some θ>0.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-0726733)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11134-012-9294-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleMulticlass multiserver queueing system in the Halfin-Whitt heavy traffic regime: asymptotics of the stationary distributionen_US
dc.typeArticleen_US
dc.identifier.citationGamarnik, David, and Alexander L. Stolyar. “Multiclass Multiserver Queueing System in the Halfin–Whitt Heavy Traffic Regime: Asymptotics of the Stationary Distribution.” Queueing Systems 71.1-2 (2012): 25–51.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorGamarnik, David
dc.relation.journalQueueing Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGamarnik, David; Stolyar, Alexander L.en
dc.identifier.orcidhttps://orcid.org/0000-0001-8898-8778
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record