MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Network Coding Meets TCP: Theory and Implementation

Author(s)
Sundararajan, Jay Kumar; Shah, Devavrat; Medard, Muriel; Jakubczak, Szymon Kazimierz; Mitzenmacher, Michael; Barros, Joao; ... Show more Show less
Thumbnail
DownloadShah_Network coding.pdf (509.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The theory of network coding promises significant benefits in network performance, especially in lossy networks and in multicast and multipath scenarios. To realize these benefits in practice, we need to understand how coding across packets interacts with the acknowledgment (ACK)-based flow control mechanism that forms a central part of today's Internet protocols such as transmission control protocol (TCP). Current approaches such as rateless codes and batch-based coding are not compatible with TCP's retransmission and sliding-window mechanisms. In this paper, we propose a new mechanism called TCP/NC that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs-the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Thus, our new TCP ACK rule takes into account the network coding operations in the lower layer and enables a TCP-compatible sliding-window approach to network coding. Coding essentially masks losses from the congestion control algorithm and allows TCP/NC to react smoothly to losses, resulting in a novel and effective approach for congestion control over lossy networks such as wireless networks. An important feature of our solution is that it allows intermediate nodes to perform re-encoding of packets, which is known to provide significant throughput gains in lossy networks and multicast scenarios. Simulations show that our scheme, with or without re-encoding inside the network, achieves much higher throughput compared to TCP over lossy wireless links. We present a real-world implementation of this protocol that addresses the practical aspects of incorporating network coding and decoding with TCP's wind ow management mechanism. We work with TCP-Reno, which is a widespread and practical variant of TCP. Our implementation significantly advances the goal of designing a deployable, general, TCP-compatible protocol that provides the benefits of network coding.
Date issued
2011-01
URI
http://hdl.handle.net/1721.1/75026
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the IEEE
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Sundararajan, Jay Kumar et al. “Network Coding Meets TCP: Theory and Implementation.” Proceedings of the IEEE 99.3 (2011): 490–512.
Version: Author's final manuscript
ISSN
0018-9219
1558-2256

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.