Show simple item record

dc.contributor.authorDewey, Dan
dc.contributor.authorDwarkadas, V. V.
dc.contributor.authorHaberl, F.
dc.contributor.authorSturm, R.
dc.contributor.authorCanizares, Claude R.
dc.date.accessioned2012-12-18T15:43:27Z
dc.date.available2012-12-18T15:43:27Z
dc.date.issued2012-05
dc.date.submitted2011-12
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://hdl.handle.net/1721.1/75761
dc.descriptionAuthor Manuscript 20 Apr 2012.en_US
dc.description.abstractObservations of SN 1987A by the Chandra High Energy Transmission Grating (HETG) in 1999 and the XMM-Newton Reflection Grating Spectrometer (RGS) in 2003 show very broad (v-b) lines with a full width at half-maximum (FWHM) of order 10[superscript 4] km s[superscript –1]; at these times the blast wave (BW) was primarily interacting with the H II region around the progenitor. Since then, the X-ray emission has been increasingly dominated by narrower components as the BW encounters dense equatorial ring (ER) material. Even so, continuing v-b emission is seen in the grating spectra suggesting that the interaction with H II region material is ongoing. Based on the deep HETG 2007 and 2011 data sets, and confirmed by RGS and other HETG observations, the v-b component has a width of 9300 ± 2000 km s[superscript –1] FWHM and contributes of order 20% of the current 0.5-2 keV flux. Guided by this result, SN 1987A's X-ray spectra are modeled as the weighted sum of the non-equilibrium-ionization emission from two simple one-dimensional hydrodynamic simulations; this "2 × 1D" model reproduces the observed radii, light curves, and spectra with a minimum of free parameters. The interaction with the H II region (ρinit ≈ 130 amu cm[superscript –3], ± 15° opening angle) produces the very broad emission lines and most of the 3-10 keV flux. Our ER hydrodynamics, admittedly a crude approximation to the multi-D reality, gives ER densities of ~10[superscript 4] amu cm[superscript –3], requires dense clumps (×5.5 density enhancement in ~30% of the volume), and predicts that the 0.5-2 keV flux will drop at a rate of ~17% per year once no new dense ER material is being shocked.en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0004-637x/752/2/103en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleEvolution and Hydrodynamics of the Very-Broad X-ray Line Emission in SN1987Aen_US
dc.typeArticleen_US
dc.identifier.citationDewey, D. et al. “EVOLUTION AND HYDRODYNAMICS OF THE VERY BROAD X-RAY LINE EMISSION IN SN 1987A.” The Astrophysical Journal 752.2 (2012): 103. © 2012 IOP Publishingen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorDewey, Dan
dc.contributor.mitauthorCanizares, Claude R.
dc.relation.journalAstrophysical Journalen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDewey, D.; Dwarkadas, V. V.; Haberl, F.; Sturm, R.; Canizares, C. R.en
dc.identifier.orcidhttps://orcid.org/0000-0002-5769-8441
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record