Optimal alignment sensing of a readout mode cleaner cavity
Author(s)
Mavalvala, Nergis; Mavalvala, Nergis; Kawabe, K.; Frolov, V. V.; Smith, Nicolas de Mateo; Evans, Matthew J; Waldman, Samuel J.; ... Show more Show less
DownloadMavalvala_Optimal alignment.pdf (137.1Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Critically coupled resonant optical cavities are often used as mode cleaners in optical systems to improve the signal-to-noise ratio (SNR) of a signal that is encoded as an amplitude modulation of a laser beam. Achieving the best SNR requires maintaining the alignment of the mode cleaner relative to the laser beam on which the signal is encoded. An automatic alignment system that is primarily sensitive to the carrier field component of the beam will not, in general, provide optimal SNR. We present an approach that modifies traditional dither alignment sensing by applying a large amplitude modulation on the signal field, thereby producing error signals that are sensitive to the signal sideband field alignment. When used in conjunction with alignment actuators, this approach can improve the detected SNR; we demonstrate a factor of 3 improvement in the SNR of a kilometer-scale detector of the Laser Interferometer Gravitational-Wave Observatory. This approach can be generalized to other types of alignment sensors.
Date issued
2011-11Department
Massachusetts Institute of Technology. Department of Physics; LIGO (Observatory : Massachusetts Institute of Technology)Journal
Optics Letters
Publisher
Optical Society of America
Citation
Smith-Lefebvre, N. et al. “Optimal Alignment Sensing of a Readout Mode Cleaner Cavity.” Optics Letters 36.22 (2011): 4365.
Version: Author's final manuscript
ISSN
0146-9592
1539-4794