MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incremental parameter estimation of kinetic metabolic network models

Author(s)
Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto
Thumbnail
Download1752-0509-6-142.pdf (894.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.0
Metadata
Show full item record
Abstract
Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE). Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified). Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates) exceeds that of metabolites (chemical species). Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA) models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.
Date issued
2012-11
URI
http://hdl.handle.net/1721.1/77143
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
BMC Systems Biology
Publisher
BioMed Central Ltd
Citation
Jia, Gengjie, Gregory Stephanopoulos, and Rudiyanto Gunawan. “Incremental Parameter Estimation of Kinetic Metabolic Network Models.” BMC Systems Biology 6.1 (2012).
Version: Final published version
ISSN
1752-0509

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.