Show simple item record

dc.contributor.authorJia, Gengjie
dc.contributor.authorStephanopoulos, Gregory
dc.contributor.authorGunawan, Rudiyanto
dc.date.accessioned2013-02-15T15:32:44Z
dc.date.available2013-02-15T15:32:44Z
dc.date.issued2012-11
dc.date.submitted2012-06
dc.identifier.issn1752-0509
dc.identifier.urihttp://hdl.handle.net/1721.1/77143
dc.description.abstractAbstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE). Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified). Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates) exceeds that of metabolites (chemical species). Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA) models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.en_US
dc.description.sponsorshipSingapore-MIT Allianceen_US
dc.publisherBioMed Central Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/1752-0509-6-142en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceBioMed Central Ltden_US
dc.titleIncremental parameter estimation of kinetic metabolic network modelsen_US
dc.typeArticleen_US
dc.identifier.citationJia, Gengjie, Gregory Stephanopoulos, and Rudiyanto Gunawan. “Incremental Parameter Estimation of Kinetic Metabolic Network Models.” BMC Systems Biology 6.1 (2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorStephanopoulos, Gregory
dc.relation.journalBMC Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2013-02-08T16:04:49Z
dc.language.rfc3066en
dc.rights.holderGengjie Jia et al.; licensee BioMed Central Ltd.
dspace.orderedauthorsJia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyantoen
dc.identifier.orcidhttps://orcid.org/0000-0001-6909-4568
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record