Show simple item record

dc.contributor.authorKeshvari, Shaiyan Oliver
dc.contributor.authorBerg, Ronald van den
dc.contributor.authorMa, Wei Ji
dc.date.accessioned2013-04-11T14:50:28Z
dc.date.available2013-04-11T14:50:28Z
dc.date.issued2013-02
dc.date.submitted2012-10
dc.identifier.issn1553-734X
dc.identifier.issn1553-7358
dc.identifier.urihttp://hdl.handle.net/1721.1/78343
dc.description.abstractChange detection is a classic paradigm that has been used for decades to argue that working memory can hold no more than a fixed number of items (“item-limit models”). Recent findings force us to consider the alternative view that working memory is limited by the precision in stimulus encoding, with mean precision decreasing with increasing set size (“continuous-resource models”). Most previous studies that used the change detection paradigm have ignored effects of limited encoding precision by using highly discriminable stimuli and only large changes. We conducted two change detection experiments (orientation and color) in which change magnitudes were drawn from a wide range, including small changes. In a rigorous comparison of five models, we found no evidence of an item limit. Instead, human change detection performance was best explained by a continuous-resource model in which encoding precision is variable across items and trials even at a given set size. This model accounts for comparison errors in a principled, probabilistic manner. Our findings sharply challenge the theoretical basis for most neural studies of working memory capacity.en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pcbi.1002927en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePLoSen_US
dc.titleNo Evidence for an Item Limit in Change Detectionen_US
dc.typeArticleen_US
dc.identifier.citationKeshvari, Shaiyan, Ronald van den Berg, and Wei Ji Ma. “No Evidence for an Item Limit in Change Detection.” Ed. Laurence T. Maloney. PLoS Computational Biology 9.2 (2013): e1002927.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Scienceen_US
dc.contributor.mitauthorKeshvari, Shaiyan Oliver
dc.relation.journalPLoS Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKeshvari, Shaiyan; van den Berg, Ronald; Ma, Wei Jien
dc.identifier.orcidhttps://orcid.org/0000-0002-5907-6259
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record