dc.contributor.author | Wang, Xiaoxin | |
dc.contributor.author | Kimerling, Lionel C. | |
dc.contributor.author | Michel, Jurgen | |
dc.contributor.author | Liu, Jifeng | |
dc.date.accessioned | 2013-07-30T18:41:15Z | |
dc.date.available | 2013-07-30T18:41:15Z | |
dc.date.issued | 2013-04 | |
dc.date.submitted | 2013-01 | |
dc.identifier.issn | 00036951 | |
dc.identifier.issn | 1077-3118 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/79733 | |
dc.description.abstract | The recent demonstration of Ge-on-Si diode lasers renews the interest in the unique carrier dynamics of Ge involving both direct (Γ) and indirect (L) valleys. Here, we report a large inherent direct gap optical gain ≥1300 cm[superscript −1] at room temperature from both tensile-strained n[superscript +] Ge-on-Si films and intrinsic Ge-on-insulator using femtosecond transmittance spectroscopy captured before direct-to-indirect valley scattering. This inherent direct gap gain is comparable to III-V semiconductors. For n[superscript +] Ge, this transient gain is ∼25× larger than its steady state gain, suggesting that reducing Γ→L or enhancing L→Γ intervalley scattering may significantly increase the optical gain of Ge lasers. | en_US |
dc.description.sponsorship | APIC Corporation. Fully LASER Integrated Photonics (FLIP) Program | en_US |
dc.description.sponsorship | Naval Air Warfare Center (U.S.). Aircraft Division (OTA N00421-03-9-0002) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Institute of Physics (AIP) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.4800015 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | MIT web domain | en_US |
dc.title | Large inherent optical gain from the direct gap transition of Ge thin films | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Wang, Xiaoxin et al. “Large Inherent Optical Gain from the Direct Gap Transition of Ge Thin Films.” Applied Physics Letters 102.13 (2013): 131116. © 2013 American Institute of Physics | en_US |
dc.contributor.department | MIT Materials Research Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Microphotonics Center | en_US |
dc.contributor.mitauthor | Kimerling, Lionel C. | en_US |
dc.contributor.mitauthor | Michel, Jurgen | en_US |
dc.relation.journal | Applied Physics Letters | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Wang, Xiaoxin; Kimerling, Lionel C.; Michel, Jurgen; Liu, Jifeng | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-3913-6189 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |