MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards electroformed nanostructured aluminum alloys with high strength and ductility

Author(s)
Ruan, Shiyun; Schuh, Christopher A.
Thumbnail
DownloadSchuh_Towards electroformed.pdf (959.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Nanostructured Al–Mn alloys are proposed as high-strength low-density materials, which can be electroformed (i.e., produced electrolytically and removed from the substrate) from ionic liquid. A variety of current waveforms, including direct current (DC) and pulsed current (PC), are used to electrodeposit nanostructured Al–Mn alloys, with some PC methods producing significant improvements in film ductility. Transmission electron microscopy observations point to a number of structural advantages induced by PC that apparently ductilize the Al–Mn alloys: (i) grain refinement to the nanocrystalline range without the introduction of a competing amorphous phase, (ii) unimodal nanocrystalline grain size distribution, and (iii) more homogeneous structure. The significant increase in apparent ductility in the PC alloys is also apparently related to stress- or deformation-induced grain growth, which leads to alloys with unique combinations of specific hardness and film ductility.
Date issued
2012-04
URI
http://hdl.handle.net/1721.1/79781
Department
Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Materials Research
Publisher
Cambridge University Press (Materials Research Society)
Citation
Ruan, Shiyun, and Christopher A. Schuh. “Towards electroformed nanostructured aluminum alloys with high strength and ductility.” Journal of Materials Research 27, no. 12 (June 24, 2012): 1638-1651. © Materials Research Society 2012
Version: Final published version
ISSN
0884-2914
2044-5326

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.