MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics

Author(s)
Esfarjani, Keivan; Chen, Gang; Chalopin, Yann; Henry, A.; Volz, S.
Thumbnail
DownloadChalopin-2012-Thermal interface conductance in.pdf (500.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We provide a derivation allowing the calculation of thermal conductance at interfaces by equilibrium molecular dynamics simulations and illustrate our approach by studying thermal conduction mechanisms in Si/Ge superlattices. Thermal conductance calculations of superlattices with period thicknesses ranging from 0.5 to 60 nm are presented as well as the temperature dependence. Results have been compared to complementary Green-Kubo thermal conductivity calculations demonstrating that thermal conductivity of perfect superlattices can be directly deduced from interfacial conductance in the investigated period range. This confirms the predominant role of interfaces in materials with large phonon mean free paths.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/79797
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physical Review B
Publisher
American Physical Society
Citation
Chalopin, Y. et al. “Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics.” Physical Review B 85.19 (2012). ©2012 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.