MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities

Author(s)
Schedler, Travis; Etingof, Pavel I.
Thumbnail
DownloadEtingof_Zeroth poisson homology.pdf (263.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Let X ⊂ ℂ[superscript 3] be a surface with an isolated singularity at the origin, given by the equation Q(x, y, z) = 0, where Q is a weighted-homogeneous polynomial. In particular, this includes the Kleinian surfaces X =  ℂ[superscipt 2]/G for G < SL[subscript 2](ℂ) finite. Let Y ≔  S[superscript n]X be the n-th symmetric power of X. We compute the zeroth Poisson homology HP[subscript 0](𝒪[subscript Y]), as a graded vector space with respect to the weight grading, where 𝒪[subscript Y] is the ring of polynomial functions on Y. In the Kleinian case, this confirms a conjecture of Alev, that HP[subscript 0] (𝒪 [G [superscipt n]⋊ S[subscript n]over ℂ[2n]) ≃ HH [subscript 0] (Weyl (𝒪 [G [superscipt n]⋊ S[subscript n]over ℂ[2n]), where Weyl[subscript 2n] is the Weyl algebra on 2n generators. That is, the Brylinski spectral sequence degenerates in degree zero in this case. In the elliptic case, this yields the zeroth Hochschild homology of symmetric powers of the elliptic algebras with three generators modulo their center, A[subscript γ], for all but countably many parameters γ in the elliptic curve. As a consequence, we deduce a bound on the number of irreducible finite-dimensional representations of all quantizations of Y. This includes the noncommutative spherical symplectic reflection algebras associated to G[superscript n] ⋊ S[subscript n].
Description
Original manuscript July 10 2009
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/79893
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal fur die reine und angewandte Mathematik (Crelles Journal)
Publisher
Walter de Gruyter
Citation
Etingof, Pavel, and Travis Schedler. “Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities.” Journal für die reine und angewandte Mathematik (Crelles Journal) 2012, no. 667 (January 2012).
Version: Original manuscript
ISSN
1435-5345
0075-4102

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.