Show simple item record

dc.contributor.authorSchedler, Travis
dc.contributor.authorEtingof, Pavel I.
dc.date.accessioned2013-08-21T15:55:23Z
dc.date.available2013-08-21T15:55:23Z
dc.date.issued2012-06
dc.date.submitted2010-02
dc.identifier.issn1435-5345
dc.identifier.issn0075-4102
dc.identifier.urihttp://hdl.handle.net/1721.1/79893
dc.descriptionOriginal manuscript July 10 2009en_US
dc.description.abstractLet X ⊂ ℂ[superscript 3] be a surface with an isolated singularity at the origin, given by the equation Q(x, y, z) = 0, where Q is a weighted-homogeneous polynomial. In particular, this includes the Kleinian surfaces X =  ℂ[superscipt 2]/G for G < SL[subscript 2](ℂ) finite. Let Y ≔  S[superscript n]X be the n-th symmetric power of X. We compute the zeroth Poisson homology HP[subscript 0](𝒪[subscript Y]), as a graded vector space with respect to the weight grading, where 𝒪[subscript Y] is the ring of polynomial functions on Y. In the Kleinian case, this confirms a conjecture of Alev, that HP[subscript 0] (𝒪 [G [superscipt n]⋊ S[subscript n]over ℂ[2n]) ≃ HH [subscript 0] (Weyl (𝒪 [G [superscipt n]⋊ S[subscript n]over ℂ[2n]), where Weyl[subscript 2n] is the Weyl algebra on 2n generators. That is, the Brylinski spectral sequence degenerates in degree zero in this case. In the elliptic case, this yields the zeroth Hochschild homology of symmetric powers of the elliptic algebras with three generators modulo their center, A[subscript γ], for all but countably many parameters γ in the elliptic curve. As a consequence, we deduce a bound on the number of irreducible finite-dimensional representations of all quantizations of Y. This includes the noncommutative spherical symplectic reflection algebras associated to G[superscript n] ⋊ S[subscript n].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0504847)en_US
dc.description.sponsorshipAmerican Institute of Mathematics (Fellowship)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Undergraduate Research Opportunities Programen_US
dc.language.isoen_US
dc.publisherWalter de Gruyteren_US
dc.relation.isversionofhttp://dx.doi.org/10.1515/crelle.2011.124en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleZeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularitiesen_US
dc.typeArticleen_US
dc.identifier.citationEtingof, Pavel, and Travis Schedler. “Zeroth Poisson homology of symmetric powers of isolated quasihomogeneous surface singularities.” Journal für die reine und angewandte Mathematik (Crelles Journal) 2012, no. 667 (January 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorEtingof, Pavel I.en_US
dc.contributor.mitauthorSchedler, Travisen_US
dc.relation.journalJournal fur die reine und angewandte Mathematik (Crelles Journal)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsEtingof, Pavel; Schedler, Travisen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0710-1416
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record