MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sharp Holder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications

Author(s)
Colding, Tobias; Naber, Aaron Charles
Thumbnail
DownloadColding_Sharp holder.pdf (388.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We prove a new estimate on manifolds with a lower Ricci bound which asserts that the geometry of balls centered on a minimizing geodesic can change in at most a Holder continuous way along the geodesic. We give examples that show that the Holder exponent, along with essentially all the other consequences that follow from this estimate, are sharp. Among the applications is that the regular set is convex for any noncollapsed limit of Einstein metrics. In the general case of a potentially collapsed limit of manifolds with just a lower Ricci curvature bound we show that the regular set is weakly convex and a.e. convex. We also show two conjectures of Cheeger-Colding. One of these asserts that the isometry group of any, even collapsed, limit of manifolds with a uniform lower Ricci curvature bound is a Lie group. The other asserts that the dimension of any limit space is the same everywhere.
Description
Original manuscript September 22, 2011
Date issued
2012-09
URI
http://hdl.handle.net/1721.1/79896
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Mathematics
Publisher
Princeton University Press
Citation
Colding, Tobias, and Aaron Naber. “Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications.” Annals of Mathematics 176, no. 2 (September 1, 2012): 1173-1229.
Version: Original manuscript
ISSN
0003-486X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.