Show simple item record

dc.contributor.authorColding, Tobias
dc.contributor.authorNaber, Aaron Charles
dc.date.accessioned2013-08-21T17:21:22Z
dc.date.available2013-08-21T17:21:22Z
dc.date.issued2012-09
dc.date.submitted2011-12
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1721.1/79896
dc.descriptionOriginal manuscript September 22, 2011en_US
dc.description.abstractWe prove a new estimate on manifolds with a lower Ricci bound which asserts that the geometry of balls centered on a minimizing geodesic can change in at most a Holder continuous way along the geodesic. We give examples that show that the Holder exponent, along with essentially all the other consequences that follow from this estimate, are sharp. Among the applications is that the regular set is convex for any noncollapsed limit of Einstein metrics. In the general case of a potentially collapsed limit of manifolds with just a lower Ricci curvature bound we show that the regular set is weakly convex and a.e. convex. We also show two conjectures of Cheeger-Colding. One of these asserts that the isometry group of any, even collapsed, limit of manifolds with a uniform lower Ricci curvature bound is a Lie group. The other asserts that the dimension of any limit space is the same everywhere.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0606629)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS-0854774)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherPrinceton University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.4007/annals.2012.176.2.10en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleSharp Holder continuity of tangent cones for spaces with a lower Ricci curvature bound and applicationsen_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias, and Aaron Naber. “Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications.” Annals of Mathematics 176, no. 2 (September 1, 2012): 1173-1229.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobiasen_US
dc.contributor.mitauthorNaber, Aaron Charlesen_US
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsColding, Tobias; Naber, Aaronen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record