Show simple item record

dc.contributor.authorReid, M. T. Homer
dc.contributor.authorRodriguez, Alejandro W.
dc.contributor.authorJohnson, Steven G.
dc.date.accessioned2013-09-06T12:16:26Z
dc.date.available2013-09-06T12:16:26Z
dc.date.issued2013-02
dc.date.submitted2013-01
dc.identifier.issn0018-9219
dc.identifier.issn1558-2256
dc.identifier.urihttp://hdl.handle.net/1721.1/80353
dc.descriptionAuthor's final manuscript July 19, 2012en_US
dc.description.abstractThe famous Johnson-Nyquist formula relating noise current to conductance has a microscopic generalization relating noise current density to microscopic conductivity, with corollary relations governing noise in the components of the electromagnetic fields. These relations, known collectively in physics as fluctuation-dissipation relations, form the basis of the modern understanding of fluctuation-induced phenomena, a field of burgeoning importance in experimental physics and nanotechnology. In this review, we survey recent progress in computational techniques for modeling fluctuation-induced phenomena, focusing on two cases of particular interest: near-field radiative heat transfer and Casimir forces. In each case we review the basic physics of the phenomenon, discuss semianalytical and numerical algorithms for theoretical analysis, and present recent predictions for novel phenomena in complex material and geometric configurations.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Grant N66001-09-1-2070-DOD)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant W911NF-07-D-0004)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Complex and Robust On-chip Nanophotonics Grant FA9550-09-1-0704)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/jproc.2012.2191749en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleFluctuation-Induced Phenomena in Nanoscale Systems: Harnessing the Power of Noiseen_US
dc.typeArticleen_US
dc.identifier.citationReid, M. T. Homer, Alejandro W. Rodriguez, and Steven G. Johnson. “Fluctuation-Induced Phenomena in Nanoscale Systems: Harnessing the Power of Noise.” Proceedings of the IEEE 101, no. 2 (February 2013): 531-545.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorReid, M. T. Homeren_US
dc.contributor.mitauthorJohnson, Steven G.en_US
dc.relation.journalProceedings of the IEEEen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsReid, M. T. Homer; Rodriguez, Alejandro W.; Johnson, Steven G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7327-4967
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record