## Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance

##### Author(s)

Censor-Hillel, Keren; Haeupler, Bernhard; Maymounkov, Petar Borissov; Kelner, Jonathan Adam
DownloadKelner_Global computation.pdf (452.2Kb)

OPEN_ACCESS_POLICY

# Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

##### Terms of use

##### Metadata

Show full item record##### Abstract

In this paper, we study the question of how efficiently a collection of interconnected nodes can perform a global computation in the GOSSIP model of communication. In this model, nodes do not know the global topology of the network, and they may only initiate contact with a single neighbor in each round. This model contrasts with the much less restrictive LOCAL model, where a node may simultaneously communicate with all of its neighbors in a single round. A basic question in this setting is how many rounds of communication are required for the information dissemination problem, in which each node has some piece of information and is required to collect all others. In the LOCAL model, this is quite simple: each node broadcasts all of its information in each round, and the number of rounds required will be equal to the diameter of the underlying communication graph. In the GOSSIP model, each node must independently choose a single neighbor to contact, and the lack of global information makes it difficult to make any sort of principled choice. As such, researchers have focused on the uniform gossip algorithm, in which each node independently selects a neighbor uniformly at random. When the graph is well-connected, this works quite well. In a string of beautiful papers, researchers proved a sequence of successively stronger bounds on the number of rounds required in terms of the conductance φ and graph size n, culminating in a bound of O(φ[superscript -1] log n).
In this paper, we show that a fairly simple modification of the protocol gives an algorithm that solves the information dissemination problem in at most O(D + polylog (n)) rounds in a network of diameter D, with no dependence on the conductance. This is at most an additive polylogarithmic factor from the trivial lower bound of D, which applies even in the LOCAL model.
In fact, we prove that something stronger is true: any algorithm that requires T rounds in the LOCAL model can be simulated in O(T + polylog(n)) rounds in the GOSSIP model. We thus prove that these two models of distributed computation are essentially equivalent.

##### Description

Original manuscript April 14, 2011

##### Date issued

2012-05##### Department

Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Mathematics##### Journal

Proceedings of the 44th symposium on Theory of Computing (STOC '12)

##### Publisher

Association for Computing Machinery (ACM)

##### Citation

Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar Maymounkov. 2012. Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance. In Proceedings of the 44th symposium on Theory of Computing (STOC '12). ACM, New York, NY, USA, 961-970.

Version: Original manuscript

##### ISBN

9781450312455