Show simple item record

dc.contributor.authorCensor-Hillel, Keren
dc.contributor.authorHaeupler, Bernhard
dc.contributor.authorMaymounkov, Petar Borissov
dc.contributor.authorKelner, Jonathan Adam
dc.date.accessioned2013-09-11T15:18:54Z
dc.date.available2013-09-11T15:18:54Z
dc.date.issued2012-05
dc.identifier.isbn9781450312455
dc.identifier.urihttp://hdl.handle.net/1721.1/80389
dc.descriptionOriginal manuscript April 14, 2011en_US
dc.description.abstractIn this paper, we study the question of how efficiently a collection of interconnected nodes can perform a global computation in the GOSSIP model of communication. In this model, nodes do not know the global topology of the network, and they may only initiate contact with a single neighbor in each round. This model contrasts with the much less restrictive LOCAL model, where a node may simultaneously communicate with all of its neighbors in a single round. A basic question in this setting is how many rounds of communication are required for the information dissemination problem, in which each node has some piece of information and is required to collect all others. In the LOCAL model, this is quite simple: each node broadcasts all of its information in each round, and the number of rounds required will be equal to the diameter of the underlying communication graph. In the GOSSIP model, each node must independently choose a single neighbor to contact, and the lack of global information makes it difficult to make any sort of principled choice. As such, researchers have focused on the uniform gossip algorithm, in which each node independently selects a neighbor uniformly at random. When the graph is well-connected, this works quite well. In a string of beautiful papers, researchers proved a sequence of successively stronger bounds on the number of rounds required in terms of the conductance φ and graph size n, culminating in a bound of O(φ[superscript -1] log n). In this paper, we show that a fairly simple modification of the protocol gives an algorithm that solves the information dissemination problem in at most O(D + polylog (n)) rounds in a network of diameter D, with no dependence on the conductance. This is at most an additive polylogarithmic factor from the trivial lower bound of D, which applies even in the LOCAL model. In fact, we prove that something stronger is true: any algorithm that requires T rounds in the LOCAL model can be simulated in O(T + polylog(n)) rounds in the GOSSIP model. We thus prove that these two models of distributed computation are essentially equivalent.en_US
dc.description.sponsorshipSimons Foundation (Postdoctoral Fellows Program)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-0843915)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2213977.2214064en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleGlobal computation in a poorly connected world: fast rumor spreading with no dependence on conductanceen_US
dc.typeArticleen_US
dc.identifier.citationKeren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar Maymounkov. 2012. Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance. In Proceedings of the 44th symposium on Theory of Computing (STOC '12). ACM, New York, NY, USA, 961-970.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorCensor-Hillel, Kerenen_US
dc.contributor.mitauthorHaeupler, Bernharden_US
dc.contributor.mitauthorKelner, Jonathan Adamen_US
dc.contributor.mitauthorMaymounkov, Petar Borissoven_US
dc.relation.journalProceedings of the 44th symposium on Theory of Computing (STOC '12)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCensor-Hillel, Keren; Haeupler, Bernhard; Kelner, Jonathan; Maymounkov, Petaren_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4257-4198
dc.identifier.orcidhttps://orcid.org/0000-0003-3381-0459
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record