MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Branched Polymers and Hyperplane Arrangements

Author(s)
Postnikov, Alexander; Meszaros, Karola
Thumbnail
DownloadPostnikov_Branched polymers.pdf (325.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We generalize the construction of connected branched polymers and the notion of the volume of the space of connected branched polymers studied by Brydges and Imbrie (Ann Math, 158:1019–1039, 2003), and Kenyon and Winkler (Am Math Mon, 116(7):612–628, 2009) to any central hyperplane arrangement A A . The volume of the resulting configuration space of connected branched polymers associated to the hyperplane arrangement A A is expressed through the value of the characteristic polynomial of A A at 0. We give a more general definition of the space of branched polymers, where we do not require connectivity, and introduce the notion of q-volume for it, which is expressed through the value of the characteristic polynomial of A A at −q − q . Finally, we relate the volume of the space of branched polymers to broken circuits and show that the cohomology ring of the space of branched polymers is isomorphic to the Orlik–Solomon algebra.
Description
Original manuscript December 17, 2009
Date issued
2013-04
URI
http://hdl.handle.net/1721.1/80707
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Discrete & Computational Geometry
Publisher
Springer-Verlag
Citation
Mészáros, Karola, and Alexander Postnikov. “Branched Polymers and Hyperplane Arrangements.” Discrete & Computational Geometry 50, no. 1 (July 23, 2013): 22-38.
Version: Original manuscript
ISSN
0179-5376
1432-0444

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.