Show simple item record

dc.contributor.authorPostnikov, Alexander
dc.contributor.authorMeszaros, Karola
dc.date.accessioned2013-09-13T12:47:57Z
dc.date.available2013-09-13T12:47:57Z
dc.date.issued2013-04
dc.date.submitted2012-11
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.urihttp://hdl.handle.net/1721.1/80707
dc.descriptionOriginal manuscript December 17, 2009en_US
dc.description.abstractWe generalize the construction of connected branched polymers and the notion of the volume of the space of connected branched polymers studied by Brydges and Imbrie (Ann Math, 158:1019–1039, 2003), and Kenyon and Winkler (Am Math Mon, 116(7):612–628, 2009) to any central hyperplane arrangement A A . The volume of the resulting configuration space of connected branched polymers associated to the hyperplane arrangement A A is expressed through the value of the characteristic polynomial of A A at 0. We give a more general definition of the space of branched polymers, where we do not require connectivity, and introduce the notion of q-volume for it, which is expressed through the value of the characteristic polynomial of A A at −q − q . Finally, we relate the volume of the space of branched polymers to broken circuits and show that the cohomology ring of the space of branched polymers is isomorphic to the Orlik–Solomon algebra.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 6923772)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award DMS 0504629)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-013-9499-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleBranched Polymers and Hyperplane Arrangementsen_US
dc.typeArticleen_US
dc.identifier.citationMészáros, Karola, and Alexander Postnikov. “Branched Polymers and Hyperplane Arrangements.” Discrete & Computational Geometry 50, no. 1 (July 23, 2013): 22-38.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorPostnikov, Alexanderen_US
dc.relation.journalDiscrete & Computational Geometryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMészáros, Karola; Postnikov, Alexanderen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3964-8870
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record