MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Correlation of GEO Comsat Anomalies and Space Weather Phenomena for Improved Satellite Performance and Risk Mitigation

Author(s)
Lohmeyer, Whitney Quinne; Cahoy, Kerri; Baker, Daniel
Thumbnail
DownloadCahoy_Correlation of.pdf (760.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We correlate on-orbit component telemetry data from seven Inmarsat geostationary communications satellites from 1996 to 2012 with historical space weather information. We specifically utilize data from the Geostationary Operational Environment Satellites (GOES), the Advanced Composition Explorer (ACE) Satellite, the Royal Observatory of Belgium’s Solar Influences Data Analysis Center (SIDC), and the Kyoto Geomagnetic Equatorial Disturbance Storm Time (Dst) Index data service. In our analysis, we compare the Inmarsat solid-state power amplifier (SSPA) currents to energetic particle fluxes and space weather indices such as Dst, Kp (an index that describes disturbances in horizontal component of the Earth’s magnetic field), and solar flares. These space weather indices capture the severity of solar storms that can send energetic particles streaming towards Earth and magnetic storms that can impact the performance of GEO communication satellites. We find that seventeen out of twenty-six SSPA anomalies occurred within two weeks of prior severe space weather events. Two anomalies occurred during geomagnetic events, one occurred during a severe radiation event caused by solar energetic protons, and fifteen occurred within two weeks of severe radiation events caused by relativistic electrons. There was no apparent correlation between spacecraft eclipse periods and anomaly occurrence. Although the year with the most anomalies coincided with a sunspot cycle minimum, there were additional fleet transition factors that prevent a clear conclusion about this aspect. Additional findings include an interesting direct relationship between the GOES 2 MeV electron flux and SSPA current prior to an anomaly. Anomalies with on-board components such as SSPAs are expected and are managed by all satellite operators. An anomaly rate is factored into the design of geostationary satellites and is typically mitigated through the use of on-board unit redundancy and configuration options. The examples given have been handled without impacting the performance of any satellite. The current SSPA anomaly rate is significantly lower than that modeled as part of the design reliability analysis, hence both performance and lifetime have not been impacted adversely.
Date issued
2012-09
URI
http://hdl.handle.net/1721.1/80845
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Proceedings of the 30th AIAA International Communications Satellite System Conference (ICSSC)
Publisher
Aerospace Research Central
Citation
Lohmeyer, Whitney, and Daniel Baker. “Correlation of GEO Comsat Anomalies and Space Weather Phenomena for Improved Satellite Performance and Risk Mitigation.” In 30th AIAA International Communications Satellite System Conference (ICSSC), September 24-27, 2012, Ottawa, CANADA. American Institute of Aeronautics and Astronautics, 2012.
Version: Author's final manuscript
ISBN
978-1-62410-242-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.