Show simple item record

dc.contributor.authorLohmeyer, Whitney Quinne
dc.contributor.authorCahoy, Kerri
dc.contributor.authorBaker, Daniel
dc.date.accessioned2013-09-20T17:43:58Z
dc.date.available2013-09-20T17:43:58Z
dc.date.issued2012-09
dc.identifier.isbn978-1-62410-242-4
dc.identifier.urihttp://hdl.handle.net/1721.1/80845
dc.description.abstractWe correlate on-orbit component telemetry data from seven Inmarsat geostationary communications satellites from 1996 to 2012 with historical space weather information. We specifically utilize data from the Geostationary Operational Environment Satellites (GOES), the Advanced Composition Explorer (ACE) Satellite, the Royal Observatory of Belgium’s Solar Influences Data Analysis Center (SIDC), and the Kyoto Geomagnetic Equatorial Disturbance Storm Time (Dst) Index data service. In our analysis, we compare the Inmarsat solid-state power amplifier (SSPA) currents to energetic particle fluxes and space weather indices such as Dst, Kp (an index that describes disturbances in horizontal component of the Earth’s magnetic field), and solar flares. These space weather indices capture the severity of solar storms that can send energetic particles streaming towards Earth and magnetic storms that can impact the performance of GEO communication satellites. We find that seventeen out of twenty-six SSPA anomalies occurred within two weeks of prior severe space weather events. Two anomalies occurred during geomagnetic events, one occurred during a severe radiation event caused by solar energetic protons, and fifteen occurred within two weeks of severe radiation events caused by relativistic electrons. There was no apparent correlation between spacecraft eclipse periods and anomaly occurrence. Although the year with the most anomalies coincided with a sunspot cycle minimum, there were additional fleet transition factors that prevent a clear conclusion about this aspect. Additional findings include an interesting direct relationship between the GOES 2 MeV electron flux and SSPA current prior to an anomaly. Anomalies with on-board components such as SSPAs are expected and are managed by all satellite operators. An anomaly rate is factored into the design of geostationary satellites and is typically mitigated through the use of on-board unit redundancy and configuration options. The examples given have been handled without impacting the performance of any satellite. The current SSPA anomaly rate is significantly lower than that modeled as part of the design reliability analysis, hence both performance and lifetime have not been impacted adversely.en_US
dc.description.sponsorshipInternational Maritime Satellite Organizationen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipMassachusetts Institute of Technologyen_US
dc.language.isoen_US
dc.publisherAerospace Research Centralen_US
dc.relation.isversionofhttp://dx.doi.org/10.2514/6.2012-15083en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleCorrelation of GEO Comsat Anomalies and Space Weather Phenomena for Improved Satellite Performance and Risk Mitigationen_US
dc.typeArticleen_US
dc.identifier.citationLohmeyer, Whitney, and Daniel Baker. “Correlation of GEO Comsat Anomalies and Space Weather Phenomena for Improved Satellite Performance and Risk Mitigation.” In 30th AIAA International Communications Satellite System Conference (ICSSC), September 24-27, 2012, Ottawa, CANADA. American Institute of Aeronautics and Astronautics, 2012.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorLohmeyer, Whitney Quinneen_US
dc.contributor.mitauthorCahoy, Kerrien_US
dc.relation.journalProceedings of the 30th AIAA International Communications Satellite System Conference (ICSSC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLohmeyer, Whitney; Baker, Danielen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7791-5124
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record