MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Power of (even a little) Centralization in Distributed Processing

Author(s)
Tsitsiklis, John N.; Xu, Kuang
Thumbnail
DownloadTsitsiklis_On the power.pdf (444.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We propose and analyze a multi-server model that captures a performance trade-off between centralized and distributed processing. In our model, a fraction p of an available resource is deployed in a centralized manner (e.g., to serve a most loaded station) while the remaining fraction 1-p is allocated to local servers that can only serve requests addressed specifically to their respective stations. Using a fluid model approach, we demonstrate a surprising phase transition in steady-state delay, as p changes: in the limit of a large number of stations, and when any amount of centralization is available (p>0), the average queue length in steady state scales as log [subscript 1/1-p] 1/1-λ when the traffic intensity λ goes to 1. This is exponentially smaller than the usual M/M/1-queue delay scaling of 1/1-λ, obtained when all resources are fully allocated to local stations (p=0). This indicates a strong qualitative impact of even a small degree of centralization. We prove convergence to a fluid limit, and characterize both the transient and steady-state behavior of the finite system, in the limit as the number of stations N goes to infinity. We show that the queue-length process converges to a unique fluid trajectory (over any finite time interval, as N → ∞), and that this fluid trajectory converges to a unique invariant state v[superscript I], for which a simple closed-form expression is obtained. We also show that the steady-state distribution of the N-server system concentrates on v[superscript I] as N goes to infinity.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/81190
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems (SIGMETRICS '11)
Publisher
Association for Computing Machinery (ACM)
Citation
John N. Tsitsiklis and Kuang Xu. 2011. On the power of (even a little) centralization in distributed processing. In Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems (SIGMETRICS '11). ACM, New York, NY, USA, 161-172.
Version: Author's final manuscript
ISBN
9781450308144

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.