Show simple item record

dc.contributor.authorVelez, Javier J.
dc.contributor.authorHemann, Garrett A.
dc.contributor.authorHuang, Albert S.
dc.contributor.authorPosner, Ingmar
dc.contributor.authorRoy, Nicholas
dc.date.accessioned2013-10-01T17:15:35Z
dc.date.available2013-10-01T17:15:35Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/1721.1/81259
dc.description.abstractConsider the task of a mobile robot autonomously navigating through an environment while detecting and mapping objects of interest using a noisy object detector. The robot must reach its destination in a timely manner, but is rewarded for correctly detecting recognizable objects to be added to the map, and penalized for false alarms. However, detector performance typically varies with vantage point, so the robot benefits from planning trajectories which maximize the efficacy of the recognition system. This work describes an online, any-time planning framework enabling the active exploration of possible detections provided by an off-the-shelf object detector. We present a probabilistic approach where vantage points are identified which provide a more informative view of a potential object. The agent then weighs the benefit of increasing its confidence against the cost of taking a detour to reach each identified vantage point. The system is demonstrated to significantly improve detection and trajectory length in both simulated and real robot experiments.en_US
dc.language.isoen_US
dc.publisherAAAI Publicationsen_US
dc.relation.isversionofhttp://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2707en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titlePlanning to Perceive: Exploiting Mobility for Robust Object Detectionen_US
dc.typeArticleen_US
dc.identifier.citationVelez, Javier; Hemann, Garrett; Huang, Albert S.; Posner, Ingmar; Roy, Nicholas. ""Twenty-First International Conference on Automated Planning and Schedulingen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorVelez, Javier J.en_US
dc.contributor.mitauthorHemann, Garrett A.en_US
dc.contributor.mitauthorHuang, Albert S.en_US
dc.contributor.mitauthorRoy, Nicholasen_US
dc.relation.journalProceedings of the Twenty-First International Conference on Automated Planning and Schedulingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsVelez, Javier; Hemann, Garrett; Huang, Albert S.; Posner, Ingmar; Roy, Nicholasen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record