MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Dynamical Queue Approach to Intelligent Task Management for Human Operators

Author(s)
Frazzoli, Emilio; Savla, Ketan D.
Thumbnail
DownloadFrazzoli_A Dynamical queue.pdf (634.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Formal methods for task management for human operators are gathering increasing attention to improve efficiency of human-in-the-loop systems. In this paper, we consider a novel dynamical queue approach to intelligent task management for human operators. We consider a model of a dynamical queue, where the service time depends on the server utilization history. The proposed queueing model is motivated by, but not restricted to, widely accepted empirical laws describing human performance as a function of mental arousal. The focus of the paper is to characterize the throughput of the dynamical queue and design corresponding maximally stabilizing task release control policies, assuming deterministic arrivals. We focus extensively on threshold policies that release a task to the server only when the server state is less than a certain threshold. When every task brings in the same deterministic amount of work, we give an exact characterization of the throughput and show that an appropriate threshold policy is maximally stabilizing. The technical approach exploits the optimality of the one-task equilibria class associated with the server dynamics. When the amount of work associated with the tasks is an independent identically distributed (i.i.d.) random variable with finite support, we show that the maximum throughput increases in comparison to the case where the tasks have the same deterministic amount of work. Finally, we provide preliminary empirical evidence in support of the applicability of the proposed approach to systems with human operators.
Date issued
2012-02
URI
http://hdl.handle.net/1721.1/81447
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the IEEE
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Savla, Ketan, and Emilio Frazzoli. “A Dynamical Queue Approach to Intelligent Task Management for Human Operators.” Proceedings of the IEEE 100, no. 3 (March 2012): 672-686.
Version: Author's final manuscript
ISSN
0018-9219
1558-2256

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.