Show simple item record

dc.contributor.authorRedding, Joshua
dc.contributor.authorGeramifard, Alborz
dc.contributor.authorChoi, Han-Lim
dc.contributor.authorHow, Jonathan P.
dc.date.accessioned2013-10-23T13:29:12Z
dc.date.available2013-10-23T13:29:12Z
dc.date.issued2010-08
dc.identifier.isbn978-1-60086-962-4
dc.identifier.issn1946-9802
dc.identifier.urihttp://hdl.handle.net/1721.1/81477
dc.description.abstractIn this paper, we introduce a method for learning and adapting cooperative control strategies in real-time stochastic domains. Our framework is an instance of the intelligent cooperative control architecture (iCCA)[superscript 1]. The agent starts by following the "safe" plan calculated by the planning module and incrementally adapting its policy to maximize the cumulative rewards. Actor-critic and consensus-based bundle algorithm (CBBA) were employed as the building blocks of the iCCA framework. We demonstrate the performance of our approach by simulating limited fuel unmanned aerial vehicles aiming for stochastic targets. In one experiment where the optimal solution can be calculated, the integrated framework boosted the optimality of the solution by an average of %10, when compared to running each of the modules individually, while keeping the computational load within the requirements for real-time implementation.en_US
dc.description.sponsorshipBoeing Scientific Research Laboratoriesen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA9550-08-1-0086)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Aeronautics and Astronauticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.2514/6.2010-7586en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleActor-Critic Policy Learning in Cooperative Planningen_US
dc.typeArticleen_US
dc.identifier.citationRedding, Joshua, Alborz Geramifard, Han-Lim Choi, and Jonathan How. “Actor-Critic Policy Learning in Cooperative Planning.” In AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, 2010.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Aerospace Controls Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorRedding, Joshuaen_US
dc.contributor.mitauthorGeramifard, Alborzen_US
dc.contributor.mitauthorChoi, Han-Limen_US
dc.contributor.mitauthorHow, Jonathan P.en_US
dc.relation.journalProceedings of the AIAA Guidance, Navigation, and Control Conferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsRedding, Joshua; Geramifard, Alborz; Choi, Han-Lim; How, Jonathanen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2508-1957
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record