Show simple item record

dc.contributor.authorGeramifard, Alborz
dc.contributor.authorChowdhary, Girish
dc.contributor.authorHow, Jonathan P.
dc.contributor.authorUre, Nazim Kemal
dc.date.accessioned2013-10-25T13:18:47Z
dc.date.available2013-10-25T13:18:47Z
dc.date.issued2012-09
dc.identifier.isbn978-3-642-33485-6
dc.identifier.isbn978-3-642-33486-3
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/81767
dc.description.abstractSolving large scale sequential decision making problems without prior knowledge of the state transition model is a key problem in the planning literature. One approach to tackle this problem is to learn the state transition model online using limited observed measurements. We present an adaptive function approximator (incremental Feature Dependency Discovery (iFDD)) that grows the set of features online to approximately represent the transition model. The approach leverages existing feature-dependencies to build a sparse representation of the state transition model. Theoretical analysis and numerical simulations in domains with state space sizes varying from thousands to millions are used to illustrate the benefit of using iFDD for incrementally building transition models in a planning framework.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-33486-3_7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceOther University Web Domainen_US
dc.titleAdaptive Planning for Markov Decision Processes with Uncertain Transition Models via Incremental Feature Dependency Discoveryen_US
dc.typeArticleen_US
dc.identifier.citationUre, N.Kemal et al. “Adaptive Planning for Markov Decision Processes with Uncertain Transition Models via Incremental Feature Dependency Discovery.” Machine Learning and Knowledge Discovery in Databases. Ed. PeterA. Flach, Tijl Bie, and Nello Cristianini. Vol. 7524. Springer Berlin Heidelberg, 2012. 99–115. Lecture Notes in Computer Science.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorUre, Nazim Kemalen_US
dc.contributor.mitauthorGeramifard, Alborzen_US
dc.contributor.mitauthorChowdhary, Girishen_US
dc.contributor.mitauthorHow, Jonathan P.en_US
dc.relation.journalMachine Learning and Knowledge Discovery in Databasesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsUre, N. Kemal; Geramifard, Alborz; Chowdhary, Girish; How, Jonathan P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2508-1957
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record