Efficient measurement of total tumor microvascularity ex vivo using a mathematical model to optimize volume subsampling
Author(s)
Spring, Bryan Q.; Palanisami, Akilan; Zheng, Lei Zak; Blatt, Amy E.; Bryan Sears, R.; Hasan, Tayyaba; ... Show more Show less
DownloadSpring-2013-Efficient measuremen.pdf (5.555Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We introduce immunofluorescence and automated image processing protocols for serial tumor sections to objectively and efficiently quantify tumor microvasculature following antivascular therapy. To determine the trade-off between tumor subsampling and throughput versus microvessel quantification accuracy, we provide a mathematical model that accounts for tumor-specific vascular heterogeneity. This mathematical model can be applied broadly to define tumor volume samplings needed to reach statistical significance, depending on the biomarker in question and the number of subjects. Here, we demonstrate these concepts for tumor microvessel density and total microvascularity (TMV) quantification in whole pancreatic ductal adenocarcinoma tumors ex vivo. The results suggest that TMV is a more sensitive biomarker for detecting reductions in tumor vasculature following antivascular treatment. TMV imaging is a broadly accessible technique that offers robust assessment of antivascular therapies, and it offers promise as a tool for developing high-throughput assays to quantify treatment-induced microvascular alterations for therapeutic screening and development.
Date issued
2013-09Department
Harvard University--MIT Division of Health Sciences and TechnologyJournal
Journal of Biomedical Optics
Publisher
SPIE
Citation
Spring, Bryan Q., Akilan Palanisami, Lei Zak Zheng, Amy E. Blatt, R. Bryan Sears, and Tayyaba Hasan. “Efficient measurement of total tumor microvascularity ex vivo using a mathematical model to optimize volume subsampling.” Journal of Biomedical Optics 18, no. 9 (September 1, 2013): 096015. © 2013 Society of Photo-Optical Instrumentation Engineers
Version: Final published version
ISSN
1083-3668
1560-2281