Show simple item record

dc.contributor.authorSpring, Bryan Q.
dc.contributor.authorPalanisami, Akilan
dc.contributor.authorZheng, Lei Zak
dc.contributor.authorBlatt, Amy E.
dc.contributor.authorBryan Sears, R.
dc.contributor.authorHasan, Tayyaba
dc.date.accessioned2013-12-23T18:34:23Z
dc.date.available2013-12-23T18:34:23Z
dc.date.issued2013-09
dc.date.submitted2013-08
dc.identifier.issn1083-3668
dc.identifier.issn1560-2281
dc.identifier.urihttp://hdl.handle.net/1721.1/83230
dc.description.abstractWe introduce immunofluorescence and automated image processing protocols for serial tumor sections to objectively and efficiently quantify tumor microvasculature following antivascular therapy. To determine the trade-off between tumor subsampling and throughput versus microvessel quantification accuracy, we provide a mathematical model that accounts for tumor-specific vascular heterogeneity. This mathematical model can be applied broadly to define tumor volume samplings needed to reach statistical significance, depending on the biomarker in question and the number of subjects. Here, we demonstrate these concepts for tumor microvessel density and total microvascularity (TMV) quantification in whole pancreatic ductal adenocarcinoma tumors ex vivo. The results suggest that TMV is a more sensitive biomarker for detecting reductions in tumor vasculature following antivascular treatment. TMV imaging is a broadly accessible technique that offers robust assessment of antivascular therapies, and it offers promise as a tool for developing high-throughput assays to quantify treatment-induced microvascular alterations for therapeutic screening and development.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant P01-CA084203)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-CA160998)en_US
dc.language.isoen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/1.JBO.18.9.096015en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleEfficient measurement of total tumor microvascularity ex vivo using a mathematical model to optimize volume subsamplingen_US
dc.typeArticleen_US
dc.identifier.citationSpring, Bryan Q., Akilan Palanisami, Lei Zak Zheng, Amy E. Blatt, R. Bryan Sears, and Tayyaba Hasan. “Efficient measurement of total tumor microvascularity ex vivo using a mathematical model to optimize volume subsampling.” Journal of Biomedical Optics 18, no. 9 (September 1, 2013): 096015. © 2013 Society of Photo-Optical Instrumentation Engineersen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorHasan, Tayyabaen_US
dc.relation.journalJournal of Biomedical Opticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSpring, Bryan Q.; Palanisami, Akilan; Zheng, Lei Zak; Blatt, Amy E.; Bryan Sears, R.; Hasan, Tayyabaen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record