MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia

Author(s)
Metallo, Christian M.; Gameiro, Paulo A.; Bell, Eric L.; Yang, Juanjuan; Hiller, Karsten; Jewell, Christopher M.; Vander Heiden, Matthew G.; Iliopoulos, Othon; Stephanopoulos, Gregory; Kelleher, Joanne Keene; Mattaini, Katherine Ruth; Guarente, Leonard Pershing; Johnson, Zachary; Irvine, Darrell J; ... Show more Show less
Thumbnail
DownloadGuarente_Reductive glutamine.pdf (717.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Acetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis, the regulation and use of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells use reductive metabolism of α-ketoglutarate to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase-1 (IDH1)-dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived α-ketoglutarate for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel–Lindau tumour suppressor protein preferentially use reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon use to produce AcCoA and support lipid synthesis in mammalian cells.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/84489
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Nature
Publisher
Nature Publishing Group
Citation
Metallo, Christian M., Paulo A. Gameiro, Eric L. Bell, Katherine R. Mattaini, Juanjuan Yang, Karsten Hiller, Christopher M. Jewell, et al. “Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.” Nature (November 20, 2011).
Version: Author's final manuscript
ISSN
0028-0836
1476-4687

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.