Show simple item record

dc.contributor.authorMetallo, Christian M.
dc.contributor.authorGameiro, Paulo A.
dc.contributor.authorBell, Eric L.
dc.contributor.authorYang, Juanjuan
dc.contributor.authorHiller, Karsten
dc.contributor.authorJewell, Christopher M.
dc.contributor.authorVander Heiden, Matthew G.
dc.contributor.authorIliopoulos, Othon
dc.contributor.authorStephanopoulos, Gregory
dc.contributor.authorKelleher, Joanne Keene
dc.contributor.authorMattaini, Katherine Ruth
dc.contributor.authorGuarente, Leonard Pershing
dc.contributor.authorJohnson, Zachary
dc.contributor.authorIrvine, Darrell J
dc.date.accessioned2014-01-24T16:40:09Z
dc.date.available2014-01-24T16:40:09Z
dc.date.issued2011-11
dc.date.submitted2011-03
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttp://hdl.handle.net/1721.1/84489
dc.description.abstractAcetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis, the regulation and use of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells use reductive metabolism of α-ketoglutarate to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase-1 (IDH1)-dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived α-ketoglutarate for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel–Lindau tumour suppressor protein preferentially use reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon use to produce AcCoA and support lipid synthesis in mammalian cells.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 DK075850-01)en_US
dc.description.sponsorshipAmerican Cancer Society (Postdoctoral Fellowship)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.)en_US
dc.description.sponsorshipBurroughs Wellcome Funden_US
dc.description.sponsorshipSmith Family Foundationen_US
dc.description.sponsorshipDamon Runyon Cancer Research Foundationen_US
dc.description.sponsorshipNational Cancer Institute (U.S.)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nature10602en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleReductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxiaen_US
dc.typeArticleen_US
dc.identifier.citationMetallo, Christian M., Paulo A. Gameiro, Eric L. Bell, Katherine R. Mattaini, Juanjuan Yang, Karsten Hiller, Christopher M. Jewell, et al. “Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.” Nature (November 20, 2011).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorMetallo, Christian M.en_US
dc.contributor.mitauthorGameiro, Paulo A.en_US
dc.contributor.mitauthorHiller, Karstenen_US
dc.contributor.mitauthorKelleher, Joanne Keeneen_US
dc.contributor.mitauthorStephanopoulos, Gregoryen_US
dc.contributor.mitauthorBell, Eric L.en_US
dc.contributor.mitauthorMattaini, Katherine Ruthen_US
dc.contributor.mitauthorGuarente, Leonard Pershingen_US
dc.contributor.mitauthorVander Heiden, Matthew G.en_US
dc.contributor.mitauthorJewell, Christopher M.en_US
dc.contributor.mitauthorJohnson, Zacharyen_US
dc.contributor.mitauthorIrvine, Darrell J.en_US
dc.relation.journalNatureen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMetallo, Christian M.; Gameiro, Paulo A.; Bell, Eric L.; Mattaini, Katherine R.; Yang, Juanjuan; Hiller, Karsten; Jewell, Christopher M.; Johnson, Zachary R.; Irvine, Darrell J.; Guarente, Leonard; Kelleher, Joanne K.; Vander Heiden, Matthew G.; Iliopoulos, Othon; Stephanopoulos, Gregoryen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6702-4192
dc.identifier.orcidhttps://orcid.org/0000-0003-0046-1360
dc.identifier.orcidhttps://orcid.org/0000-0002-8676-5738
dc.identifier.orcidhttps://orcid.org/0000-0003-4064-2510
dc.identifier.orcidhttps://orcid.org/0000-0001-6909-4568
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record