Show simple item record

dc.contributor.authorNanni, Emilio Alessandro
dc.contributor.authorLewis, Samantha M.
dc.contributor.authorGriffin, Robert Guy
dc.contributor.authorShapiro, B.
dc.contributor.authorTemkin, Richard J
dc.date.accessioned2014-02-24T18:47:52Z
dc.date.available2014-02-24T18:47:52Z
dc.date.issued2013-12
dc.date.submitted2013-05
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/85081
dc.description.abstractWe report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3  dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3  dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE[subscript 03]-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB001965)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB004866)en_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.111.235101en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titlePhotonic-Band-Gap Traveling-Wave Gyrotron Amplifieren_US
dc.typeArticleen_US
dc.identifier.citationNanni, E., S. Lewis, M. Shapiro, R. Griffin, and R. Temkin. “Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier.” Physical Review Letters 111, no. 23 (December 2013). © 2013 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.departmentMIT Nuclear Reactor Laboratoryen_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorNanni, Emilio Alessandroen_US
dc.contributor.mitauthorLewis, Samantha M.en_US
dc.contributor.mitauthorShapiro, Michaelen_US
dc.contributor.mitauthorGriffin, Robert Guyen_US
dc.contributor.mitauthorTemkin, Richard J.en_US
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNanni, E.; Lewis, S.; Shapiro, M.; Griffin, R.; Temkin, R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1589-832X
dc.identifier.orcidhttps://orcid.org/0000-0001-9813-0177
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record