MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

Author(s)
Meng, Jianping; Zhang, Yonghao; Radtke, Gregg A.; Shan, Xiaowen; Hadjiconstantinou, Nicolas
Thumbnail
DownloadHadjiconstantinou_Lattice ellipsoidal.pdf (1.477Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small-Mach-number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0.5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased.
Description
Author manuscript September 28, 2012
Date issued
2013-02
URI
http://hdl.handle.net/1721.1/85579
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Fluid Mechanics
Publisher
Cambridge University Press
Citation
Meng, Jianping, Yonghao Zhang, Nicolas G. Hadjiconstantinou, Gregg A. Radtke, and Xiaowen Shan. “Lattice Ellipsoidal Statistical BGK Model for Thermal Non-Equilibrium Flows.” J. Fluid Mech. 718 (March 2013): 347–370.
Version: Author's final manuscript
ISSN
0022-1120
1469-7645

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.