Show simple item record

dc.contributor.authorMeng, Jianping
dc.contributor.authorZhang, Yonghao
dc.contributor.authorRadtke, Gregg A.
dc.contributor.authorShan, Xiaowen
dc.contributor.authorHadjiconstantinou, Nicolas
dc.date.accessioned2014-03-10T17:11:46Z
dc.date.available2014-03-10T17:11:46Z
dc.date.issued2013-02
dc.date.submitted2012-09
dc.identifier.issn0022-1120
dc.identifier.issn1469-7645
dc.identifier.urihttp://hdl.handle.net/1721.1/85579
dc.descriptionAuthor manuscript September 28, 2012en_US
dc.description.abstractA thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small-Mach-number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0.5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased.en_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1017/jfm.2012.616en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleLattice ellipsoidal statistical BGK model for thermal non-equilibrium flowsen_US
dc.typeArticleen_US
dc.identifier.citationMeng, Jianping, Yonghao Zhang, Nicolas G. Hadjiconstantinou, Gregg A. Radtke, and Xiaowen Shan. “Lattice Ellipsoidal Statistical BGK Model for Thermal Non-Equilibrium Flows.” J. Fluid Mech. 718 (March 2013): 347–370.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorHadjiconstantinou, Nicolasen_US
dc.contributor.mitauthorRadtke, Gregg A.en_US
dc.relation.journalJournal of Fluid Mechanicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMeng, Jianping; Zhang, Yonghao; Hadjiconstantinou, Nicolas G.; Radtke, Gregg A.; Shan, Xiaowenen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1670-2264
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record