MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Depths and temperatures of <10.5 Ma mantle melting and the lithosphere-asthenosphere boundary below southern Oregon and northern California

Author(s)
Till, Christy B.; Grove, Timothy L.; Carlson, Richard W.; Donnelly-Nolan, Julie M.; Fouch, Matthew J.; Wagner, Lara S.; Hart, William K.; ... Show more Show less
Thumbnail
DownloadGrove_Depths and temperatures.pdf (3.460Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Plagioclase and spinel lherzolite thermometry and barometry are applied to an extensive geochemical dataset of young (<10.5 Ma) primitive basaltic lavas from across Oregon's High Lava Plains, California's Modoc Plateau, and the central-southern Cascades volcanic arc to calculate the depths and temperatures of mantle melting. This study focuses on basalts with low pre-eruptive H2O contents that are little fractionated near-primary melts of mantle peridotite (i.e., basalts thought to be products of anhydrous decompression mantle melting). Calculated minimum depths of nominally anhydrous melt extraction are 40–58 km below Oregon's High Lava Plains, 41–51 km below the Modoc Plateau, and 37–60 km below the central and southern Cascades arc. The calculated depths are very close to Moho depths as determined from a number of regional geophysical studies and suggest that the geophysical Moho and lithosphere-asthenosphere boundary in this region are located in very close proximity to one another (within 5–10 km). The basalts originated at 1185–1383°C and point to a generally warm mantle beneath this area but not one hot enough to obviously require a plume contribution. Our results, combined with a range of other geologic, geophysical, and geochemical constraints, are consistent with a regional model whereby anhydrous mantle melting over the last 10.5 Ma in a modern convergent margin and back arc was driven by subduction-induced corner flow in the mantle wedge, and to a lesser extent, toroidal flow around the southern edge of the subducting Juan de Fuca and Gorda plates, and crustal extension-related upwelling of the shallow mantle.
Date issued
2013-04
URI
http://hdl.handle.net/1721.1/85581
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Geochemistry, Geophysics, Geosystems
Publisher
American Geophysical Union (AGU)
Citation
Till, Christy B., Timothy L. Grove, Richard W. Carlson, Julie M. Donnelly-Nolan, Matthew J. Fouch, Lara S. Wagner, and William K. Hart. “Depths and Temperatures of <10.5 Ma Mantle Melting and the Lithosphere-Asthenosphere Boundary Below Southern Oregon and Northern California.” Geochem. Geophys. Geosyst. (April 2013): 1–16. Copyright © 2013 American Geophysical Union
Version: Final published version
ISSN
15252027

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.