Show simple item record

dc.contributor.authorTill, Christy B.
dc.contributor.authorGrove, Timothy L.
dc.contributor.authorCarlson, Richard W.
dc.contributor.authorDonnelly-Nolan, Julie M.
dc.contributor.authorFouch, Matthew J.
dc.contributor.authorWagner, Lara S.
dc.contributor.authorHart, William K.
dc.date.accessioned2014-03-10T17:34:03Z
dc.date.available2014-03-10T17:34:03Z
dc.date.issued2013-04
dc.date.submitted2013-01
dc.identifier.issn15252027
dc.identifier.urihttp://hdl.handle.net/1721.1/85581
dc.description.abstractPlagioclase and spinel lherzolite thermometry and barometry are applied to an extensive geochemical dataset of young (<10.5 Ma) primitive basaltic lavas from across Oregon's High Lava Plains, California's Modoc Plateau, and the central-southern Cascades volcanic arc to calculate the depths and temperatures of mantle melting. This study focuses on basalts with low pre-eruptive H2O contents that are little fractionated near-primary melts of mantle peridotite (i.e., basalts thought to be products of anhydrous decompression mantle melting). Calculated minimum depths of nominally anhydrous melt extraction are 40–58 km below Oregon's High Lava Plains, 41–51 km below the Modoc Plateau, and 37–60 km below the central and southern Cascades arc. The calculated depths are very close to Moho depths as determined from a number of regional geophysical studies and suggest that the geophysical Moho and lithosphere-asthenosphere boundary in this region are located in very close proximity to one another (within 5–10 km). The basalts originated at 1185–1383°C and point to a generally warm mantle beneath this area but not one hot enough to obviously require a plume contribution. Our results, combined with a range of other geologic, geophysical, and geochemical constraints, are consistent with a regional model whereby anhydrous mantle melting over the last 10.5 Ma in a modern convergent margin and back arc was driven by subduction-induced corner flow in the mantle wedge, and to a lesser extent, toroidal flow around the southern edge of the subducting Juan de Fuca and Gorda plates, and crustal extension-related upwelling of the shallow mantle.en_US
dc.language.isoen_US
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/ggge.20070en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOther univ. web domainen_US
dc.titleDepths and temperatures of <10.5 Ma mantle melting and the lithosphere-asthenosphere boundary below southern Oregon and northern Californiaen_US
dc.typeArticleen_US
dc.identifier.citationTill, Christy B., Timothy L. Grove, Richard W. Carlson, Julie M. Donnelly-Nolan, Matthew J. Fouch, Lara S. Wagner, and William K. Hart. “Depths and Temperatures of <10.5 Ma Mantle Melting and the Lithosphere-Asthenosphere Boundary Below Southern Oregon and Northern California.” Geochem. Geophys. Geosyst. (April 2013): 1–16. Copyright © 2013 American Geophysical Unionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorTill, Christy B.en_US
dc.contributor.mitauthorGrove, Timothy L.en_US
dc.relation.journalGeochemistry, Geophysics, Geosystemsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTill, Christy B.; Grove, Timothy L.; Carlson, Richard W.; Donnelly-Nolan, Julie M.; Fouch, Matthew J.; Wagner, Lara S.; Hart, William K.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3136-4942
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record