dc.contributor.author | Weller, Daniel S. | |
dc.contributor.author | Polimeni, Jonathan R. | |
dc.contributor.author | Grady, Leo | |
dc.contributor.author | Wald, Lawrence L. | |
dc.contributor.author | Adalsteinsson, Elfar | |
dc.contributor.author | Goyal, Vivek K. | |
dc.date.accessioned | 2014-03-21T16:15:03Z | |
dc.date.available | 2014-03-21T16:15:03Z | |
dc.date.issued | 2012-08 | |
dc.identifier.isbn | 978-1-4673-0182-4 | |
dc.identifier.isbn | 978-1-4673-0181-7 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/85876 | |
dc.description.abstract | Accelerating magnetic resonance imaging (MRI) by reducing the number of acquired k-space scan lines benefits conventional MRI significantly by decreasing the time subjects remain in the magnet. In this paper, we formulate a novel method for Joint estimation from Undersampled LinEs in Parallel MRI (JULEP) that simultaneously calibrates the GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) reconstruction kernel and reconstructs the full multi-channel k-space. We employ a joint sparsity signal model for the channel images in conjunction with observation models for both the acquired data and GRAPPA reconstructed k-space. We demonstrate using real MRI data that JULEP outperforms conventional GRAPPA reconstruction at high levels of undersampling, increasing the peak-signal-to-noise ratio by up to 10 dB. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (CAREER Grant 0643836) | en_US |
dc.description.sponsorship | National Center for Research Resources (U.S.) (P41 RR014075) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NIH R01 EB007942) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (NIH R01 EB006847) | en_US |
dc.description.sponsorship | Siemens Corporation | en_US |
dc.description.sponsorship | National Science Foundation (U.S.). Graduate Research Fellowship Program | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/SSP.2012.6319666 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Accelerated parallel magnetic resonance imaging reconstruction using joint estimation with a sparse signal model | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Weller, Daniel S., Jonathan R. Polimeni, Leo Grady, Lawrence L. Wald, Elfar Adalsteinsson, and Vivek K Goyal. “Accelerated Parallel Magnetic Resonance Imaging Reconstruction Using Joint Estimation with a Sparse Signal Model.” 2012 IEEE Statistical Signal Processing Workshop (SSP) (n.d.). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | en_US |
dc.contributor.mitauthor | Weller, Daniel S. | en_US |
dc.contributor.mitauthor | Adalsteinsson, Elfar | en_US |
dc.contributor.mitauthor | Goyal, Vivek K. | en_US |
dc.relation.journal | Proceedings of the 2012 IEEE Statistical Signal Processing Workshop (SSP) | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Weller, Daniel S.; Polimeni, Jonathan R.; Grady, Leo; Wald, Lawrence L.; Adalsteinsson, Elfar; Goyal, Vivek K | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7637-2914 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |