Show simple item record

dc.contributor.authorWeller, Daniel S.
dc.contributor.authorPolimeni, Jonathan R.
dc.contributor.authorGrady, Leo
dc.contributor.authorWald, Lawrence L.
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorGoyal, Vivek K.
dc.date.accessioned2014-03-21T16:15:03Z
dc.date.available2014-03-21T16:15:03Z
dc.date.issued2012-08
dc.identifier.isbn978-1-4673-0182-4
dc.identifier.isbn978-1-4673-0181-7
dc.identifier.urihttp://hdl.handle.net/1721.1/85876
dc.description.abstractAccelerating magnetic resonance imaging (MRI) by reducing the number of acquired k-space scan lines benefits conventional MRI significantly by decreasing the time subjects remain in the magnet. In this paper, we formulate a novel method for Joint estimation from Undersampled LinEs in Parallel MRI (JULEP) that simultaneously calibrates the GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) reconstruction kernel and reconstructs the full multi-channel k-space. We employ a joint sparsity signal model for the channel images in conjunction with observation models for both the acquired data and GRAPPA reconstructed k-space. We demonstrate using real MRI data that JULEP outperforms conventional GRAPPA reconstruction at high levels of undersampling, increasing the peak-signal-to-noise ratio by up to 10 dB.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant 0643836)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (P41 RR014075)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01 EB007942)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01 EB006847)en_US
dc.description.sponsorshipSiemens Corporationen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/SSP.2012.6319666en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAccelerated parallel magnetic resonance imaging reconstruction using joint estimation with a sparse signal modelen_US
dc.typeArticleen_US
dc.identifier.citationWeller, Daniel S., Jonathan R. Polimeni, Leo Grady, Lawrence L. Wald, Elfar Adalsteinsson, and Vivek K Goyal. “Accelerated Parallel Magnetic Resonance Imaging Reconstruction Using Joint Estimation with a Sparse Signal Model.” 2012 IEEE Statistical Signal Processing Workshop (SSP) (n.d.).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorWeller, Daniel S.en_US
dc.contributor.mitauthorAdalsteinsson, Elfaren_US
dc.contributor.mitauthorGoyal, Vivek K.en_US
dc.relation.journalProceedings of the 2012 IEEE Statistical Signal Processing Workshop (SSP)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWeller, Daniel S.; Polimeni, Jonathan R.; Grady, Leo; Wald, Lawrence L.; Adalsteinsson, Elfar; Goyal, Vivek Ken_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record