MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Highly Scalable Parallel Boundary Element Method for Capacitance Extraction

Author(s)
Hsiao, Yu-Chung; Daniel, Luca
Thumbnail
DownloadDaniel_A highly.pdf (470.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Traditional parallel boundary element methods suffer from low parallel efficiency and poor scalability due to the long system solving time bottleneck. In this paper, we demonstrate how to avoid such a bottleneck by using an instantiable basis function approach. In our demonstrated examples, we achieve 90% parallel efficiency and scalability both in shared memory and distributed memory parallel systems.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/86226
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 48th ACM/EDAC/IEEE Design Automation Conference (DAC), 2011
Publisher
Association for Computing Machinery
Citation
Hsiao, Yu-Chung, Luca Daniel. "A highly scalable parallel boundary element method for capacitance extraction." 48th ACM/EDAC/IEEE Design Automation Conference (DAC 2011), June 5-10, 2011, San Diego, California, USA. p. 552-557.
Version: Author's final manuscript
Other identifiers
INSPEC Accession Number: 12180214
ISBN
978-1-4503-0636-2
ISSN
0738-100x

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.