Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell
Author(s)
Ren, Y.; Hovenier, J. N.; Cui, M.; Hayton, D. J.; Gao, J. R.; Klapwijk, T. M.; Shi, S. C.; Reno, J. L.; Kao, Tsung-Yu; Hu, Qing; ... Show more Show less
DownloadHu_Frequency locking.pdf (604.2Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We report frequency locking of two 3.5-THz third-order distributed feedback (DFB)quantum cascade lasers(QCLs) by using methanol molecular absorption lines, a proportional-integral-derivative controller, and a NbN bolometer. We show that the free-running linewidths of the QCLs are dependent on the electrical and temperature tuning coefficients. For both lasers, the frequency locking induces a similar linewidth reduction factor, whereby the narrowest locked linewidth is below 18 kHz with a Gaussian-like shape. The linewidth reduction factor and the ultimate linewidth correspond to the measured frequency noise power spectral density.
Date issued
2012-01Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Applied Physics Letters
Publisher
American Institute of Physics (AIP)
Citation
Ren, Y., J. N. Hovenier, M. Cui, D. J. Hayton, J. R. Gao, T. M. Klapwijk, S. C. Shi, T.-Y. Kao, Q. Hu, and J. L. Reno. “Frequency Locking of Single-Mode 3.5-THz Quantum Cascade Lasers Using a Gas Cell.” Appl. Phys. Lett. 100, no. 4 (2012): 041111. © 2012 American Institute of Physics
Version: Final published version
ISSN
00036951
1077-3118