MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Lower Bounds for Anonymous Scheduling Mechanisms

Author(s)
Ashlagi, Itai; Dobzinski, Shahar; Lavi, Ron
Thumbnail
DownloadAshlagi_Optimal lower.pdf (489.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We consider the problem of designing truthful mechanisms on m unrelated machines, to minimize some optimization goal. Nisan and Ronen [Nisan, N., A. Ronen. 2001. Algorithmic mechanism design. Games Econom. Behav. 35 166–196] consider the specific goal of makespan minimization, and show a lower bound of 2, and an upper bound of m. This large gap inspired many attempts that yielded positive results for several special cases, but very partial success for the general case: the lower bound was slightly increased to 2.61 by Christodoulou et al. [Christodoulou, G., E. Koutsoupias, A. Kovács. 2010. Mechanism design for fractional scheduling on unrelated machines. ACM Trans. Algorithms (TALG) 6(2) 1–18] and Koutsoupias and Vidali [Koutsoupias, E., A. Vidali. 2007. A lower bound of 1+phi for truthful scheduling mechanisms. Proc. 32nd Internat. Sympos. Math. Foundations Comput. Sci. (MFCS)], while the best upper bound remains unchanged. In this paper we show the optimal lower bound on truthful anonymous mechanisms: no such mechanism can guarantee an approximation ratio better than m. Moreover, our proof yields similar optimal bounds for two other optimization goals: the sum of completion times and the lp norm of the schedule.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/87602
Department
Sloan School of Management
Journal
Mathematics of Operations Research
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Ashlagi, Itai, Shahar Dobzinski, and Ron Lavi. “Optimal Lower Bounds for Anonymous Scheduling Mechanisms.” Mathematics of Operations Research 37, no. 2 (May 2012): 244–258.
Version: Author's final manuscript
ISSN
0364-765X
1526-5471

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.