Show simple item record

dc.contributor.authorAshlagi, Itai
dc.contributor.authorDobzinski, Shahar
dc.contributor.authorLavi, Ron
dc.date.accessioned2014-06-02T16:25:26Z
dc.date.available2014-06-02T16:25:26Z
dc.date.issued2012-05
dc.date.submitted2011-09
dc.identifier.issn0364-765X
dc.identifier.issn1526-5471
dc.identifier.urihttp://hdl.handle.net/1721.1/87602
dc.description.abstractWe consider the problem of designing truthful mechanisms on m unrelated machines, to minimize some optimization goal. Nisan and Ronen [Nisan, N., A. Ronen. 2001. Algorithmic mechanism design. Games Econom. Behav. 35 166–196] consider the specific goal of makespan minimization, and show a lower bound of 2, and an upper bound of m. This large gap inspired many attempts that yielded positive results for several special cases, but very partial success for the general case: the lower bound was slightly increased to 2.61 by Christodoulou et al. [Christodoulou, G., E. Koutsoupias, A. Kovács. 2010. Mechanism design for fractional scheduling on unrelated machines. ACM Trans. Algorithms (TALG) 6(2) 1–18] and Koutsoupias and Vidali [Koutsoupias, E., A. Vidali. 2007. A lower bound of 1+phi for truthful scheduling mechanisms. Proc. 32nd Internat. Sympos. Math. Foundations Comput. Sci. (MFCS)], while the best upper bound remains unchanged. In this paper we show the optimal lower bound on truthful anonymous mechanisms: no such mechanism can guarantee an approximation ratio better than m. Moreover, our proof yields similar optimal bounds for two other optimization goals: the sum of completion times and the lp norm of the schedule.en_US
dc.description.sponsorshipUnited States-Israel Binational Science Foundationen_US
dc.description.sponsorshipIsrael. Ministry of Scienceen_US
dc.description.sponsorshipGoogle Inter-University Center for Electronic Markets and Auctionsen_US
dc.language.isoen_US
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1287/moor.1110.0534en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleOptimal Lower Bounds for Anonymous Scheduling Mechanismsen_US
dc.typeArticleen_US
dc.identifier.citationAshlagi, Itai, Shahar Dobzinski, and Ron Lavi. “Optimal Lower Bounds for Anonymous Scheduling Mechanisms.” Mathematics of Operations Research 37, no. 2 (May 2012): 244–258.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorAshlagi, Itaien_US
dc.relation.journalMathematics of Operations Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAshlagi, Itai; Dobzinski, Shahar; Lavi, Ronen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2124-738X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record