MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum nonexpander problem is quantum-Merlin-Arthur-complete

Author(s)
Jordan, Stephen P.; Liu, Yi-Kai; Wocjan, Pawel; Bookatz, Adam D.
Thumbnail
DownloadBookatz-2013-Quantum nonexpander problem.pdf (253.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A quantum expander is a unital quantum channel that is rapidly mixing, has only a few Kraus operators, and can be implemented efficiently on a quantum computer. We consider the problem of estimating the mixing time (i.e., the spectral gap) of a quantum expander. We show that the problem of deciding whether a quantum channel is not rapidly mixing is a complete problem for the quantum Merlin-Arthur complexity class. This has applications to testing randomized constructions of quantum expanders and studying thermalization of open quantum systems.
Date issued
2013-04
URI
http://hdl.handle.net/1721.1/88738
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Bookatz, Adam, Stephen Jordan, Yi-Kai Liu, and Pawel Wocjan. “Quantum Nonexpander Problem Is Quantum-Merlin-Arthur-Complete.” Phys. Rev. A 87, no. 4 (April 2013). © 2013 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.