Show simple item record

dc.contributor.authorJordan, Stephen P.
dc.contributor.authorLiu, Yi-Kai
dc.contributor.authorWocjan, Pawel
dc.contributor.authorBookatz, Adam D.
dc.date.accessioned2014-08-15T18:29:29Z
dc.date.available2014-08-15T18:29:29Z
dc.date.issued2013-04
dc.date.submitted2012-12
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/88738
dc.description.abstractA quantum expander is a unital quantum channel that is rapidly mixing, has only a few Kraus operators, and can be implemented efficiently on a quantum computer. We consider the problem of estimating the mixing time (i.e., the spectral gap) of a quantum expander. We show that the problem of deciding whether a quantum channel is not rapidly mixing is a complete problem for the quantum Merlin-Arthur complexity class. This has applications to testing randomized constructions of quantum expanders and studying thermalization of open quantum systems.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Cooperative Research Agreement DE-FG02-05ER41360)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Center for Science of Information (Grant CCF-0939370)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award CCF-0746600)en_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.87.042317en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleQuantum nonexpander problem is quantum-Merlin-Arthur-completeen_US
dc.typeArticleen_US
dc.identifier.citationBookatz, Adam, Stephen Jordan, Yi-Kai Liu, and Pawel Wocjan. “Quantum Nonexpander Problem Is Quantum-Merlin-Arthur-Complete.” Phys. Rev. A 87, no. 4 (April 2013). © 2013 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorBookatz, Adam D.en_US
dc.contributor.mitauthorWocjan, Pawelen_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBookatz, Adam; Jordan, Stephen; Liu, Yi-Kai; Wocjan, Pawelen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9475-2091
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record