MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability

Author(s)
Oelker, Abigail M.; Morey, Shannon M.; Griffith, Linda G.; Hammond, Paula T.
Thumbnail
DownloadGriffith_Helix versus.pdf (1.661Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
As a platform for investigating the individual effects of substrate stiffness, permeability, and ligand density on cellular behavior, we developed a set of hydrogels with stiffness tuned by polymer backbone rigidity, independent of cross-link density and concentration. Previous studies report that poly(propargyl-L-glutamate) (PPLG), synthesized by ring-opening polymerization of the N-carboxy anhydride of γ-propargyl-L-glutamate (γpLglu), adopts a rigid a-helix conformation: we hypothesized that a random copolymer (PPDLG) with equal amounts of γpLglu and γ-propargyl-D-glutamate (γpDglu) monomers would exhibit a more flexible random coil conformation. The resulting macromers exhibited narrow molecular weight distributions (PDI = 1.15) and were grafted with ethylene glycol groups using a highly efficient “click” azide/alkyne cycloaddition reaction with average grafting efficiency of 97% for PPLG and 85% for PPDLG. The polypeptide secondary structure, characterized via circular dichroism spectroscopy, FTIR spectroscopy, and dynamic light scattering, is indeed dependent upon monomer chirality: PPLG exhibits an α-helix conformation while PPDLG adopts a random coil conformation. Hydrogel networks produced by cross-linking either helical or random coil polypeptides with poly(ethylene glycol) (PEG) were analyzed for amount of swelling, gelation efficiency, and permeability to a model protein. In addition, the elastic modulus of helical and coil polypeptide gels was determined by AFM indentation in fluid. Importantly, we found that helical and coil polypeptide gels exhibited similar swelling and permeability but different stiffnesses, which correspond to predictions from the theory of semi-flexible chains.
Date issued
2012-09
URI
http://hdl.handle.net/1721.1/88913
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemistry
Journal
Soft Matter
Publisher
Royal Society of Chemistry
Citation
Oelker, Abigail M., Shannon M. Morey, Linda G. Griffith, and Paula T. Hammond. “Helix Versus Coil Polypeptide Macromers: Gel Networks with Decoupled Stiffness and Permeability.” Soft Matter 8, no. 42 (2012): 10887.
Version: Author's final manuscript
ISSN
1744-683X
1744-6848

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.